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1 Introduction

The Conics are the curves that are obtained by intersecting a double cone
or a circular cylinder with a plane. They consist of ellipses, parabolas,
hyperbolas, pairs of coplanar straight lines, single straight lines, single points,
and the empty set (see Figures 1 and 2). They were defined and investigated
by the Greeks over 2300 years ago and Apollonius of Perga (ca. 262 - ca. 190
B.C.) proved several hundreds of theoretical propositions regarding them.
Johannes Kepler (1571 - 1630) observed that planets and comets revolve
in elliptical orbits about the sun and subsequently many other scientific
applications of the conic sections have been discovered. In this chapter it is
proved that the conic sections constitute all the graphs of the general second
degree equation

Az® + Bxy+Cy*+ Dz + Ey=F. (1)

This theorem has been attributed to Pierre Fermat (16017 - 1665). It is then
applied to the topic of determining the maxima and minima of functions in
two variables.

2 Translations and Rotations of Cartesian Coor-
dinate Systems

Coordinate systems possess a degree of arbitrariness in that the origin can be
placed anywhere in addition to some more freedom in placing the coordinate
axes. It is not surprising then that different coordinate systems will yield
different algebraic descriptions of the same geometrical object. For example,
the point A in Figure 3 has p‘ositive coordinates in the coordinate system
(O, x,y) whereas its coordinates relative to the system (O,«’,y') are both
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Figure 1: The intersections of a plane with a cone
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Figure 2: The intersections of a plane with a cylinder
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Figure 3: Different coordinates

negative. We shall see that this flexibilty is actually very useful as it makes
it possible to find optimal coordinate systems that simplify the algebraic
equations that arise.

We first examine the effect that changing the origin without changing
the (directions of the) axes has. Suppose a coordinate system (O,zx,y) is
given, and a point O, with coordinates (h,k) is selected as the origin of
the new coordinate system (O',z’,y’) whose axes are parallel to the old
axes. More precisely, the new coordinate system is obtained by a parallel
translation of the old system (Fig. 4). The parallel translation that moves
the origin to the point (h, k) is denoted by 7(4 x)- It is clear from this figure
that the relation between the old and new coordinates is given by

z=2'4+h, y=vy +k. (2)

In other words, the arbitrary point A whose coordinates in the old coordi-
nate system are (z,y) has coordinates (z',y') = (z — h,y — k) in the new
system.

Example 2.1 Find the coordinates of the point (3, -2) relative to the trans-
lated coordinate system with origin at (-1, 3).

The old coordinates of O’ were (z,y) = (—1,3) whereas its new coordinates
are (z',y') = (0,0). It follows from Eq’n (2) that

—1=0+h,3=0+EF or h=-1k=3.
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Figure 4: Translation of a coordinate system

Hence the new coordinates of (3, -2) are
r=3-(-1)=4,y=-2-3=-5 or (z',y') = (4, -5).

Example 2.2 Find the equation of the straight line 3x + 4y = 5 after the
coordinate system is subjected to the translation 7(3,_1).

Substitute Eq’n (2) into 3z + 4y = 5 to obtain
3(z' +2)+ 4"+ (1)) =5

or
3z’ + 4y’ =3.

Example 2.3 Find the equation of the circle of radius 5 and center (-2,3)
after the coordinate system is subjected to the translation 75 1)

The circle’s equation in the old coordinate system is (z+2)2+ (y — 3)% = 25.
The substitution of Eq’'n (2) into this equation yields

(£ +2+22%+ (@ —-1-38)2=25

or
(' + 42+ (¢ — 4)* = 25.

Next we examine the effect that changing the axes without changing
either their relative disposition or the origin has on the coordinates. In other
words, the new coordinate system is obtained from the old one by a rotation
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Figure 5: Rotation of a coordinate system

about O (Fig. 5) by an angle of, say, a. This rotation is denoted by R,.
The comparison of the angles of AOQM and APQM’ allows us to conclude
that

LIM'PQ = /MOQ = a.

Hence,
z=0M =ON - MN =ON — M'N'
=OM'cosa— PM'sina =z’ cosa — ¢/ sinav.
Thus,
z=21'cosa —y sina (3)
and similarly (Exercise 1)
y=2'sina+y cosa. (4)

When Eq’ns (3,4) are solved simultaneously for =’ and y’ we obtain
z' =zcosa+ ysina (5)

Yy = —zsina+ ycosa. (6)

Example 2.4 Find the new coordinates of the points (1, 0) and (1, 1) if
the coordinate azes are subjected to the rotation Reggo.
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The new coordinates of (1, 0) are given by Eq’ns (5,6):

' =1-c0s60° 4+ 0 -sin60° =

1
2
y' =—1-8in60° + 0 - cos60° =

RVE]

5

Similarly, the new equations of (1,1) are

' =1-cos60° + 1 -sin60° = L&

s : o o __ 1—+/3
y = —1-8in60° + 1 cos60° = ==*=.

Example 2.5 Find the new equation of the straight line 3x + 4y = 5 if the
coordinate azes are subjected to the rotation Rggo.

Substitute Equations (3, 4) into the given linear equation to obtain

3(z’ cos 60° — ' sin 60°) + 4(z’ sin 60° + 3 cos 60°) = 5

(%+2\/§)x'+<2—¥)y'=5.

or

EXERCISES 8.2

1. Find the coordinates of the points (2, -7), (-2, 3), and (a, b) relative
to the translated coordinate system with origin at (1, —3).

2. Find the coordinates of the points (2, -7), (-2, 3), and (a, b) relative
to the translated coordinate system with origin at (—1,3).

3. Find the coordinates of the points (2, -7), (-2, 3), and (a, b) relative
to the translated coordinate system with origin at (c, d).

4. Find the equation of the straight line 2z — 3y + 1 = 0 after the
coordinate system is subjected to the translation 7(_; 3).

5. Find the equation of the straight line Az + By = C after the
coordinate system is subjected to the translation 7, 4.

6. Find the equation of the circle 2 4 y* — 4z + 6y = 14 after the
coordinate system is subjected to the translation 75 _3).

7. Find the equation of the parabola y* = 6z after the coordinate
system is subjected to the translation 7(3 _3).

8. Find the new coordinates of the points ((1, 0), (0, 1), (1, 1) if the
coordinate axes are subjected to the rotation R, where o equals

a) 30° Db)45° ¢)60° d)90° e)120° f)135° g) 180° h)
270°.

9. Find the new coordinates of the points ((1, 2), (-1, 1), (-3,-4) if the
coordinate axes are subjected to the rotation R, where o equals

a) 30° b)45° ¢)60° d)90° e)120° f)135° g) 180° h)
270°.
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10. Find the new equation of the straight line y = x if the coordinate
axes are subjected to the rotation R, where o equals

a) 30° b)45° ¢) 60° d)90° e)120° £)135° g) 180° h)
270°.

11. Find the new equation of the straight line y = z if the coordinate
axes are subjected to the rotation R,.

12. Find the new equation of the straight line  + 2y = 3 if the
coordinate axes are subjected to the rotation R,where a equals

a) 30° b)45° ¢)60° d)90° e)120° £)135° g)180° h)
270°.

13. Find the new equation of the straight line Az + By = C if the
coordinate axes are subjected to the rotation R,.

14. Find a new equation of the graph of y = 1/z if the coordinate
system is subjected to the rotation Rgse.

15. Find a new equation of the graph of y = z? if the coordinate
system is subjected to the rotation Rgse

3 Graphs of Second Degree Equations
The most general linear equation in two unknowns is of course
Az + By+C =0.

where A, B, and C are not all zero. Its graph is always a straight line, unless
A = B = 0 in which case the graph is empty. It is natural to look for the
graphs of second degree equations as well. Examples of these are

z?2+4y* =1, an ellipse (7

z? —4y?> =1, a hyperbola (8)

y =22, a parabola 9)

y* = z?, two intersecting straight lines (10)
z2 — 2 =0, two parallel straight lines (11)
x> +y* =0, a point (12)

z? +y* = —1, the null set (13)
z+y=0, astraight line (14)

The most general equation of this degree is
Az? + Bxy + Cy* + Dz + Ey = F. (15)

where A, B,C,D, E, and F are not all zero. We shall show that a second
degree equation is always of one of the types mentioned in Eq’'ns (7-14).
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Let G denote the graph of Eq’n (1). We first find a rotation of the
coordinate system such that the equation of G in the new system has no
"mixed” zy terms. Of course, if B = 0 there is nothing to do and so we
assume that B # 0. To determine the appropriate angle of rotation o we
substitute Eq’'ns (3,4) into the general quadratic (15) to obtain

A(z' cos o — o sin )% + B(2' cos o — ¢/ sin @) (z’ sin & + 3/’ cos @)
+C(z'sina + 3 cos @)® + D(a’ cos a — y sin o)+
E(z'sina+y cosa)+ F =0.

Since the purpose of this rotation is to nullify the z'y’ coefficient we must
chose an « such that

B(cos? o — sin? &) + 2(C — A)sinacos a = 0

or
t 20 = A-C
co 5
Since B # 0 and the range of the cotangent function is the whole of R, such
an o always exists. Thus we may, and do, assume that B = 0.
If A= C = 0 Eq’n (16) reduces to

Dx+FEy=F

which is the equation of a straight line.
If A=0 but C # 0 then

Cyl:+Dz+Ey=F

whose graph is a parabola if D $# 0 and one or two straight lines if D = 0.
Such too is the case if A # 0 but C = 0.

If both A # 0 and C # 0 are numbers of the same sign, then the graph
is an ellipse (or a point or the null set). When A and C have opposite signs
the graph is a hyperbola (or a pair of intersecting lines).

Thus we have proved the following theorem.

Theorem 3.1 The graph of an equation of the form
Az’ + Bxy+Cy*+ Dz + Ey=F

is one the following: an ellipse, a hyperbola, a parabola, two intersecting
straight lines, two parallel straight lines, one straight line, a point, or the
null set.

O
When studying the effect of transformations it is useful to have invari-
ants which are expressions whose form is unchanged by the transformations.

The next proposition demonstrates the invariance of two such expressions
for the conics: B?2 —4AC and A 4+ C.
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Proposition 3.2 Suppose the equation
Az’ + Bxy+ Cy*+ De+ Ey=F
18 transformed into the equation
A'z? + B'a'y' + C'y* + D's’ + Ely = F

by means of either a translation 7,1y or a rotation R, (of coordinates).
Then
B? —4A'C'=B? - 4AC and A +C =A+C. (16)

PROOF: We discuss the translations first. In this case, it follows from
Exercise 1 that
A=A B =B, C=C.

Consequently both the equations of (16) are clearly satisfied.
Turning to rotations, we know from Exercise 2 that
A'+C' = A(cos? a+sin®a) + B -0 + C(sin? o + cos®> o) = A + C.

The proof that B2 — 4A'C’ = B% — 4AC is equally straightforward though
somewhat longer. The details are relegated to Exercise 3. Q.E.D.

The quantity B2 — 4AC is the discriminant of the general quadratic
(15). The table below uses the invariance of the discriminant to summarize
the classification of the conic sections. It is a corollary of the invariance of
the discriminant.

B? - 4AC | Type Degenerate cases
<0 Ellipse Point, null set
=0 Parabola | One or two parallel straight lines
>0 Hyperbola | Two intersecting straight lines

Example 3.3 The graph of
e +doy+y? =5
s a hyperbola because

B2 -4AC=4>—-4-1-1=12>0.



3 GRAPHS OF SECOND DEGREE EQUATIONS 11

In fact, when the coordinates are rotated so as to eliminate the mixed term,
we obtain
A+C'=A+C=1+1=2

o P —4AC' B2 —4AC 12
AC="="F =~ =4 ~1-°

Thus either A’ = 3,0’ = —1 or A’ = —1,C’ = 3, leading to either
322 —y2=5 or —2?+3y%=5.
Example 3.4 The graph of
4 + dzy+y2 =5
is a parabola because
B?—4AC=4"-4-4-1=0.
In fact, the equation can be factored as
c+y)?=5 or 22+y=+V5

whose graph consists of two parallel straight lines of slope -2.
EXERCISES 8.3

1. Suppose B2 — 4AC # 0. Prove that if the coordinate system is
subjected to the translation 7, 1) where

_ 20D - BE

. . _ 2AE - BD

B2 —4AC"’ T B2 —4AC

then the general quadratic of Equation (15) is transformed into
A.’L',z +BCL'Iy,+C’yI2 — F/.
2. Prove that if the coordinate system is subjected to a rotation R,
where
1 14A-C

o= Ecot_ B

then the general quadratic equation (15) has the new equation
Az? +Cy? +Da' + Ey = F'.

where
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A’ = Acos? a4+ Bcosasina + Csin o
C' = Asin? o — Bsinacosa + C cos? o
D' =Dcosa+ Esina

E'=FEcosa— Dsina

Fr=F

3. Complete the missing details in the last paragraph of the proof of Propo-
sition 3.2.
4. Let G be the graph of the equation

Az +Cy =F.

Prove the following assertions:

a. If AC > 0 then G is an ellipse, the origin, or the null set;

b. If AC < 0 then G is either a hyperbola or a pair of intersecting
straight lines;

c. If AC = 0 then G is the entire plane, a pair of parallel straight
lines, a single straight line, or the empty set.

5. a) Prove that if C' # 0 and # 0 then the graph of the equation

Cy*+ Dz +Ey=F

is a parabola.
b) Explain why if C # 0 then the graph of the equation
]

Cy’+Ey=F

is either a straight line or a pair of parallel straight lines.
6. Determine the nature of the graphs of the following equations.
a. 2?2 +xy+y?=1;
b. 2 +axy—y?=1;
c. 2 —zy+yt=1;
d. 2?2 —zy—y? =0
e. 2+ 2xy+1y2 =1;
f. 2?24+ 2cy—y?=1,
g. 3z% -2y + 9% =1;
h. —22 —2zy—y? =1;
i 4o +day+y? =1,
j. 4z? + dxy — y? = 1;
k. 4% —day+ 92 =1;
l. —42? + 4oy — 492 = 1.
m. 2% —zy—y?=—1.
n. z% — 2y — 3y% = 0.
0. 2% — 2zy — 3y% = —1.
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7. For which values of A, B,C, F is the graph of
Az? + Bay+Cy* =F

a(n)

. hyperbola

. parabola

. ellipse

. pair of parallel straight lines

. pair of intersecting straight lines
single straight line

. single point

. empty set.

R O A0 o

4 Quadratic Forms

A quadratic form is a function of the form
z=Q(z,y) = Az’ + Bay + Cy?, A, B,C not all zero.

The form is said to be positive definite if it vanishes only at (0,0) and its
range consists of the nonnegative reals; it is negative definite if its range
consists of the non positive numbers. The forms

22+¢y? and —a2?—9?
exhibit such behaviors. The form @ is definite if it is either positive or
negative definite.
If the form @ assumes both positive and negative values, it is said to
be indefinite. Such is the case for

Q(.’L‘, y) & :1:2 - y2'

Finally, if the form also vanishes at other points besides the origin, but
otherwise its values are either all positive or all negative, then it is semi —
definite. Such is the case for the forms

(x—y)2=m2—2a;y+y2 and —(w—y)zz—x2+2xy—y2.

Lemma 4.1 Let Q(x,y) be a quadratic form. Then the range of @ is not
affected by a transformation of the xy-plane.

PROOF: This is obvious.

Lemma 4.2 Let Q(x,y) = Az? + Bzy + Cy? be a quadratic form. Then Q
18

a) definite if and only if B2 —4AC < 0 (positive if A > 0 and negative
if A<0),

b) indefinite if and only if B2 — 4AC > 0.
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PROOF: a) Note that

Qz,y) = Az? + Bxy + Cy?

B \? 4AC - B?
=A (w+2—Ay) +—— y2] (17)

4A?

Hence if B2 — 4AC < 0 the bracketed term of (17) above is the sum of two
squares and so @} is positive definite if A < 0 and negative definite if A > 0.

If B2—4AC > 0 the bracketed term is the difference of two squares and
hence, by choosing suitable values of = and y, it can assume both negative
and positive values. Thus, ) is indefinite. Q.E.D.

Lemma 4.3 Let Q(z,y) be a positive definite quadratic form. Then there
exists a positive number m such that for all (z,y) # (0,0)

Q(x,y)

= > m.
x2+y2 —

PROOF: Assume first that B = 0. Then 0 > B2—4AC = —4AC, and hence
A and C are both positive. Consequently

Az? + Cy? ]
i > min{A,C} > 0.

If B # 0, then there is a rotation of the z and y axes such that

Amz -{—B:Ey—1— Cy2 B Armﬂ_f_cfyfz
2 -+ y2 - m:r2 + yrz

> min{A4’,C'} > 0.

The reason A’ and C’ are both positive is that by Eq’n (18)
—A'C'=0?- A'C' = B* - 4AC < 0.

Since this rotation does not alter the range of values of Q(z,y), we are
done. Q.E.D.

Lemma 4.4 Let Q(z,y) be any quadratic form. Then the function

Q(z,y)
x2 4+ y2

is constant along each straight line through the origin.

PROOQOF': Note that
Q(tz, ty) = ?Q(z,y).

Since the quadratic form 22 + y? has the same property, the lemma follows
when the common #? term is cancelled. Q.E.D.
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EXERCISES 8.4

1. For each of the following quadratic forms decide whether it is defi-
nite, semi-definite, or indefinite and determine its sign.

a. o2 — 3xy+2y? b. 4z? — 2zy+24% c. 2 — 3xy — 2?

d.z? +3zy+ 2% e —2224+2% £ 22-3zy g 3wy+ 22
h. 22 — 3xy + 22

2. Verify that z2 — 2xy + 3y? is a positive definite form. Find the
largest possible number m and the smallest number M such that such that

for all (z,y) # (0,0)

2 _ 2
< 2zy + 3y <
ad ;32 "i" yz .

3. Verify that 22 4+ 22y + 2y? is a positive definite form. Find the
largest possible number m and the smallest possible number M such that
for all (z,y) # (0,0)

2 2
LTyt .,

$2+y2 —

4. Prove that if the discriminant of a quadratic form Q(z,y) is 0 the
then the form is semidefinite.

5 Extrema of Functions of Two Variables

The reader will recall that if a is either a maximizing or a minimizing location
of the function f(z), then

f'(a) =0.
Moreover, a is maximizing or minimizing according as f”(a) is negative or
positive. If f”(a) is zero, then no conclusion can be drawn. We now go on
to investigate the extension of these concepts to functions of two variables.

Let f: D C R2 — R be a function. Then f is said to have a relative
mazimum at (a,b) provided there is a region R C D, containing (a, b) in its
interior, such that

f(@,b) > f(z,y) forall (z,y) € D.

It is clear that each of the surfaces of Figures 6 and 7 has a relative maximum
at the origin.
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Figure 6: An absolute maximum

Let f: D C ®2 — R be a function. Then f is said to have an absolute
mazimum at (a,b) provided

f(a,b) > f(z,y) forall (z,y)€ D.

The relative maximum of Figure 6 at the origin is also an absolute maximum.
However, the relative maximum of Figure 7 is not absolute since the points
of the surface that are far from the origin are higher than the point at the
origin.

Let f: D C %2 — R be a function. Then f is said to have a relative
minimum at (a,b) provided there is a region R C D, containing (a, b) in its
interior, such that

fla,b) < f(z,y) forall (z,y) €D.

It is clear that each of the surfaces of Figures 8 and 9 has a relative minimum
at the origin.

Let f: D C 2 — R be a function. Then f is said to have an absolute
minimum at (a,b) provided

f(a,b) < f(z,y) forall (z,y)€ D.

The relative minimum of Figure 8 at the origin is also an absolute minimum.
However, the relative minimum of Figure 9 is not absolute since the points
of the surface that are far from the origin are lower than the point at the
origin. The extrema are its maxima and minima.

Let the function f be differentiable at (a,b) and suppose it has a
relative maximum there. Then, for all sufficiently small h
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Figure 7: A relative maximum

Figure 8: An absolute minimum
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Figure 9: A relative minimum

f(a+h,b) > f(a,b).

and hence

fla+hb)— fla,b) [ =0 ifh>0
h <0 ifh<0

Consequently, if
lim f({1+h,b) i f(a,b)
h—0 h

exists it must be both non-negative and non-positive, or, in other words, it
must be zero. Since f was assumed to be differentiable, it follows that

5 h,b) — f(a,b
R

Similarly,

imilarly. Of o\ — i J@0+R) — f(ab) _
3y(a, )_hl_i% h B

Similar arguments lead to the same conclusion regarding the the partial
derivatives of f at a minimizing location. In summary:

Proposition 5.1 If (a,b) is an extremizing point of the function f, then

of _9f
%(a,b) = —8;(01, b) =0.
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Figure 10: A non-extremal point

Ol

The converse of this proposition is false, as is demonstrated by Figure
10 which consists of the graph of f(z,y) = 2% —y2. It is clear that the origin
is not an extremal point and yet both partial derivatives there are 0. We
shall now describe a 2-dimensional analog of the second derivative test for
maxima and minima.

Theorem 5.2 Let z = f(z,y) : D C 82 — R such that
fz(a,b) = fy(a,b) =0.

1. If foz(a,b) > 0 and f2,(a,b) — foz(a,b) fyy(a,b) < O then f has a
relative minimum at (a, b).

2. If foz(a,b) < 0 and m2y(a, b) — fac(a,b) fyy(a,b) < O then f has a
relative mazimum at (a, b).

3. If f2,(a,b) — fax(a,b)fyy(a,b) > O the f has neither a relative
minimum nor a relative mazimum at (a, b).

PROOF: Given any constant ¢ the extremal points of f(z,y) as well as its
derivatives are the same as those of f(z,y) — c. Hence we may assume that

0= f(a’ab) = fm(a,b) = fy(a,b)'

Similarly, by the chain rule, coordinate translations have no effect on the
derivatives of f and hence we may assume that

(a"b) - (0’ 0)'
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Figure 11: A horizontal cross-section above a point

Figure 12: A horizontal cross-section below a saddle point
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By Taylor’s Theorem 4.3.5, or just Eq’n (13) of Chapter 7,

f(z,y) = Az® + Bay + Cy* + R(z,y)

where _
4= F=00 500, oS00
|R(z,y)| < K(|z| + |y|)® for some constant K.
Set
Q(x,y) = Az’ + Bxy + Cy?
so that

f(z,9) = Q(z,y) + R(z,y). (18)

We turn to part 1 of the theorem. The stated inequalities are tanta-
mount to saying that the form ) above is positive definite. By Lemma 4.3
there exists a positive real number m such that for all (z,y) # (0,0),

Qz,y) 2 m(z® +¢°).

If we restrict to the subdomain
m

<

then, with the help of Exercise 1,

[R(z,9)| < K(lz| + y])* = K(l=| + ly)* (=l + u)
< 2K (0 +y?) (| + yl) < 2K (2 +47) - 25
~ %3(302 +y°)

Hence by, Equation 18,
f@y) 2m(@ +y%) - Z6* +v%) > 0= £(0,0)

and it follows that f(x,y) does indeed have a relative minimum at the origin.
This concludes the proof of part 1.

Part 2 is relegated to Exercise 2.

For the proof of part 3 we note by Lemma 4.2b that there exist points
(z1,31) and (zg,y2) such that

Q(z1,41) <0 and Q(z2,y2) > 0.

Set

m = —1-min {_Q(ﬂ?la y1) Qz2,12) }

2 oityi 23+ ul
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so that

Qz1,y1) < —m(zi+y}) and Q(z2,y2) > m(a3 + y3). (19)

Again it is necessary to restrict attention to the subdomain

m
< .
0< zl, [yl < g3 (20)

If either (z1,y1) or (z2,y2) is outside this subdomain, it can, by Lemma, 4.4,
be replaced by a point that does satisfy both Eq’ns (19) and (20).
Then

f(x1,y1) = Q(z1,y1) + R(z1,y1)

< —m(zi +yi) + 2K (2} + o) (|=1| + [wa])

iO8

8K
m

= —m(m% + y%) + —2—(90% + ’y1)2 < 0.

< —m(z? +y}) + 2K (@} +y3) -2

and

f(z2,y2) = Q(x2,y2) + R(x2,y2)

> m(x3 +y3) — 2K (@F + y3)(|z2] + lyal)
m
8K
_ 2 2 m, o 2

=m(z3 + y3) — 5(902 +yz) > 0.

> m(z} +vy3) — 2K (23 + y2) - 2

Hence, there exist points arbitrarily close to (0,0) where f(z,y) is
positive and points arbitrarily close to (0,0) where f(z,y) is negative. Con-
sequently f(x,y) assumes neither a minimum nor a maximum at this point.

Q.E.D.

The proof of the 2-dimensional max/min theorem above is somewhat
technical but it can be given a geometrical explanation. Suppose the func-
tion f has a (relative) maximum, say 0, at (a,b). Then the cross-section
of any horizontal plane with the graph of f near the point (a,b,0) consists
either of a small closed loop, a single point, or an empty set, according as
the plane lies below that tangent plane at this point, passes through it, or
lies above it. Thus, this cross section is ellipse-like. A similar observation
holds for minimum points. On the other hand, if the partial derivatives at
(a,b) are zero and it is neither a relative maximum nor a minimum, then
the tangent plane at (a,b) is still horizontal and planes that are parallel to
it will intersect the surface in hyperbola-like curves (see Figures 11 and 12).

EXERCISES 8.5
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1. Prove that if  and y are any real numbers then
(Il + y)?* < 2(2® +9°).
2. Find the extrema of the following functions:
a.f(z,y) = 2*+4y°—4x+2y b.f(x,y) = 2 +zy—y? c.f(z,y) = 2*—zy+y?

d.f(z,y) =2°+2zy+y* e.f(z,y) = (&® — 2z)(y* — 2y)
£.f(z,y) = (& - 32)(y* — 2y) g.f(2,y) = («® — 3x)(y* — 3y)
hf(z,y) =2 —zy+y° if(z,y) =2°—zy+y*
jfl@y)=2z—y+2*—zy+y® k.f(z,y) = (22° - 32%)(2° — 3¢?)

6 Constrained Extrema

Many natural optimization problems have built-in constraints on the vari-
ables. If the question is of a geometrical nature, the variables may have to
be nonnegative; if the problem regards a production problem, the variables
may be limited by either the resources or the capacity of the manufacturing
facility.

Example 6.1 For which point (x,y) on the ellipse

22 g2
R AN |
9 "1
is the value of the function f(x,y) = = + 2y as large as possible? For which

point is it as small as possible?

The level curves = + 2y = c are sketched in Figure 13 for some values of ¢
as is the ellipse. These level curves have in general the property that any
transversal curve, in particular also the given ellipse, encounters successive
level curves of consistently increasing or consistently decreasing ¢’s. The
exception to this rule are those level curves that are tangent to the ellipse.
These are the points A and B. Another example of this phenomenon is
illustrated in Figure 14 which shows how the level curves of the function
z? 4+ zy + 4y? are intersected by the unit circle. The critical points are
A, B,C,D.

It is clear that the defining property of these critical points is that at
these points the level curve is tangent to the constraint curve. This means
that these two curves share the same tangent line. Hence they also share
the same normal and this is the characteristic that can be uscd to locate the
optimal points.

Let f(z,y) be an arbitrary differentiable function which attains a max-
imum or minimum at (a,b) subject to the constraint

g(z,y) =c.
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Figure 13: Locating the constrained extrema
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Figure 14: Locating the constrained extrema
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We know from Section 2.6 that the gradient
Vf(a,b)

is orthogonal to the level curve of f(x,y) at the point (a,b) which has the
equation

f(mi y) . f(a’b)
Similarly, the gradient Vg(a,b) is orthogonal to the level curve
9(z,y) = g(a, b).

Since it was argued that the two level curves are tangent to each other, it
follows that these two gradients have the same directions. In other words,
there exists a real number A, called the Lagrange multiplier, such that

AV f(a,b) = Vyg(a,b). (21)

Returning to Example 6.1 note that constraining the point to lie on the given
ellipse is tantamount to the constraint

a® b2
5 t7=1! (22)
so that ) )
a?  y
Eq’n(21) becomes
2a 2b
>‘(172) - (?a "4—>
or 5
a= 5)\, b=4\. (23)

Thus, Eq’ns (22, 23) constitute a system of three equations in the three
unknowns a,b, and A. This is a non-trivial task. In general, the following
strategy seems to work well for the systems of equations that arise in con-
strained optimization problems:

Ezpress each of the other unknowns in terms of A and substitute these
expressions into the given constraint g(z,y) = c.

Accordingly, we substitute
9
a= 5/\ and b=4\
into Eg’n (22) to obtain

92 2 __
=1
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which implies that

2
A=%—.
5

It follows from Eq’n (23) that the object function f(z,y) = = + 2y assumes

its extremal values at
9 8 9 8
(g,g) and (-E,—g) .

9 8 9 8
f<5’3)=5>—5=f(“5’—5)

it follows that = + 2y assumes its maximum at the first of these points and
its minimum at the second.
Actually, Eq’n (21) can be replaced by the logically equivalent

Since

Vf=AVg. (24)
The judicious choice may simplify the resulting equations somewhat.
Example 6.2 Find the points on the ellipse
22 +dzy 4+ 3y% =1 (25)
where x2 — y? is, respectively, minimum and mazimum.
The problem calls for the points that extremize
f(@,y) =a®—y°
subject to the constraint
g(xz,y) = 222 + 4oy + 3y = 1.
Here Eq’n (24) becomes
(4a + 4b, 4a + 6b) = A(2a, —2b)
which yields the system

{ 2—Na+26=0 (26)

20+ 3+ A)b=0
This system has a nontrivial solution if and only if
2-x 2
i< ( 2 3+ ) e

which means that

(2-2N)B+X)—-2:2=0 or AM4+X-2=0.
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This equation has the solutions A =1, —2.
If A = 1 then the system (26) yields a = —2b and substitution into
(25) gives

1 2 -2 1
b=:k:%, a=¥% or (a,b)=ﬂ:<%,%>.

If A = —2 then the system (26) yields b = —2a and substitution into
(24) gives

1 2 1 -2
a=iﬁ, b=:|:% or (a,b)=i(%,%).

Substitution of these points into f(z,y) demonstrates that the first two
points maximize and the second pair minimize values of f.

The same method resolves constrained optimization with more inde-
pendent variables. If there are, say, three variables, then the level curves
are replaced by level surfaces. Optimality still entails tangency (of surfaces)
and Eq’ns (21) and (24) hold again.

Example 6.3 Find the dimensions of the largest (in terms of volume) box
that can be inscribed in the surface

4x? 4 3y% + 222 = 288.

Let (z,y, 2) be the vertex of the box in the first octant. We seek to
maximize
f(@,y,2) = zyz

subject to the constraint
g(x,y) = 4a? + 3y + 222 — 288 =0
Eq'n (21) implies that
(be, ca, ab) = X(8a, 6b, 4c)

_be _ca _ab
TR U e ST
The multiplication of each pair of these equations yields, after some terms

are cancelled,

a

a’? =24)2, b =32)%, ? =48)\%
When these are substituted into the constraint we oblain
42402 +3.32)% +2-48)% = 288

or
A==1
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Since a, b, c must be positive, we have
a=2v6, b=4v2, c=4V3.
Thus, the dimensions that maximize the volume are

4v/6,8v/2,8V/3.

Suppose the variables are bound by two constraints, say
g(xi u, Z) =c¢ and h({L‘, Y, z) =d.

Their level surfaces intersect in a curve, say C. If £ is the tangent vector
of C, it must be orthogonal to both Vg and Vh. On the other hand, the
tangency of C to the level surfaces of f at the critical points implies that ¢
is also orthogonal to V f. In general, Vg and Vh of the plane orthogonal to
£ and so there exist numbers A and p such that

Vf = AVg+ uVh. 27)

This translates to three equations in the five unknowns a,b,c, A\, u. Two
more equations are provided by the constraints.

Example 6.4 Find the extremal values of 4x + 2z subject to the constraints
224+ y2=1and y®+ 22 =2.

Equation (27) becomes
(4,0,2) = M\(2z,2y,0) + (0, 2y, 22)

or
4=2xx, 0=(2 +2u)y, 2=2u=.

If y = 0 then z = 1 and z = ++/2, which yields the points
(£1,0,£v/2).

If y # 0 then

xr=

1
R At pu z y

The elimination of y from the constraints yields

or
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Since p = — A this equation becomes
1 4
1= n<

which is clearly impossible. Thus, the critical points are amongst the points
(28) above. It is clear that (1,0, /2) maximizes 4z+2z whereas (—1,0, —/2)
minimizes it.

EXERCISES 8.6

In Ezercises 1-12 find the location and extremal values of the function
f(z,y) subject to the constraint g(z,y) = c.

f@,y) =z +y,9(z,y) = 2% + 5oy + 3y* — 1
f(z,y) = 2z — 3y, 9(z,y) = 22° + 3wy +y* - 2
f(way) = :L'yz,g(a:,y) = "I"z il y2 -9
Fz,y) =22 +2¢% g(x,y) = 207 + 2wy + 3y° — 1
flz,y) = 2® + 2%, g(z,y) = 32 + dzy + 49* ~ 2
fz,y) = zy, g(x,y) = 2° + 5oy + 49 — 3
flx,y,2) =z +y+29(z,y) =2° +2y2 +324—5
f(z,y,2) —$+2y+32 9(z,y) = 2? +y +22~-10
flz,y,2) = 22+ y? + 22, g(z,y, 2) = x* +2y + 322

10 flz,y,2) = yz-l—zm-l-a:y,g(a:,y,z) = z? +2y + 322

11. f(z,y,2) = xyz, 9(z,y, z) = 2% + 2% + 322

12. f(z,y,2) = 2%yz,9(2,y,2) = 2* + 2y + 322

13. An open top box is to be made out of 12 meter? of material. Find
the dimensions that will maximize its volume.

14. An open top box is to have a capacity of V cubic ft. Find the
dimensions that will minimize the construction materials.

15. Use the methods of this section to prove that of all the rectangles
of fixed perimeter p the square one has the maximum area.

16. Use the methods of this section to prove that of all the rectangles
of fixed area a the square one has the minimum perimeter.

17. Use the methods of this chapter to prove that of all the boxes
inscribed in a sphere, the cube has the maximum volume.

18. Use the methods of this chapter to prove that of all the boxes
inscribed in a sphere, the cube has the maximum surface area.

19. Suppose

<°9°N?=P‘PS°E°Z-‘

f(z,y) = Lz* + Mzy + Ny?, g(z,y) = Ex* + Fay+ Gy? — ¢

Prove that every Lagrange multiplier A that arises from extremizing f(z,y)
subject to the constraint g(z,y) = c satisfies the quadratic equation

(EG — F2)\? — (EN + GL — 2FM)A\ + (LN — M%) = 0.
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20. Assume that the charge for the shipment of a box is proportional
to f(z,y) = xzy where = denotes the length of the box and y denotes the
circumference of the face perpendicular to the direction of this length. Find
the dimensions that minimize the charge of a box if

a. the box is to have volume V;

b. the surface area of the box is to be S.

21. Find the maximum value of

f(z1,22,...,2n) = Y122 .. ZTp
subject to the constraint
1+ 2o+ ...+x=c¢C

where 1, Za, ..., Zn, ¢ are non negative numbers. Deduce that

1+ x4+ ...+ 2y
n '

Wrizy.. . p <

22. Find the extremal values of  + 2z subject to the constraints
z2+y?=1and y? + 22 =2.

23. Find the extremal values of Az+ By+C'z subject to the constraints
z? +y? = r? and y? + 22 = R?%, where A, B,C,r, R are arbitrary.



