7. INFINITE SERIES
September 16, 2009

1 A Historical Introduction

The oldest infinite series whose summation has been recorded is

1 1 1 _ 4
1+Z+4—2+4—3+...—§

which Archimedes used to evaluate the area of the segment cut from a
parabola by a straight line. The care that he took to prove the validity
of this infinite summation indicates that this idea was his own invention,
for, in the same book, when using known results, he was content to cite his
predecessors’ work and did not take the trouble to reprove them. His method
generalizes easily to a proof of the well known summation of the geometric

progression
1+'r+'r2+'r3+...=1—_1_1-_ provided -1<r<1. 1)

No other infinite series is known to have been summed until the fourteenth
century when Nicole Oresme (ca. 1323 - 1382) summed the series

1 2 3 4
§+2—2+§+2—4+....
The development of calculus in the seventeenth century renewed mathe-
matician’s interest in such series and Newton, Leibniz, Gregory and others
derived many such summations. Their methods almost always made use of
questionable analogies to operations on polynomials. For example, if the
term r of (1) is replaced with —z2 we obtain

1—m2+z4—x6+—...=-1+7 provided —-1<z<]1.

Integration then vields
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23 2% 27

-1
—_—— = ——=4...= -1 il
T 3-|—5 7+ tan™ "z + C, <zr<

The substitution £ = 0 tells us that C = 0 and hence

2 oz oz

——4+——-—7=+...=tanlgz, -l<z<l, 2
T3 + 5 7 + n -, x (2)
The restriction —1 < z < 1 notwithstanding, it is tempting to substi-
tute x = 1 into this equation and obtain
1 1 1 ™
l-S4+-—=+...=tan" 1=
gtg-gt-=tn 1
This equation happens to be valid although the above argument cannot be
considered to be a rigorous proof. Consider for example what would happen
if we substituted z = —1 into Eq’n (1). This would result in the ”equation”
1-141-1+...= =
=g
which is clearly absurd. Still, it would be nice to have some such expression
as (2) since the definition of the inverse tangent function is not much help if
we wish to compute a such as tan~!.5 (Exercises 3, 4).

To take another example, in order to obtain the infinite series expan-
sion of the function y = e* we might start out by assuming such a series to
exist, say

y=e% =co+ci1x + cox® +c3xd +.... (3)

Differentiation yields
y =€ = ¢ + 2cox + 3caw? + degxd + ...

The term by term comparison of these two series yields

Cn—1
n.

-=1,2,3,....

tn

Since the substitution z = 0 wto Eq’n (3) gives

it follows that
Cn = —- (4)
Thus,

a=§:%n (5)

Many other examples will be found in the exercises.
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In the early eighteenth century Brook Taylor observed that if a func-
tion f(z) does have a power series expansion, say,

fl@)=co+a(@—a)+ezr—a)l+c(z—a)+... (6)

then the coefficient ¢, can be evaluated by the differentiating this equation
n times and substituting = a. This yields

f(")(a) = nlec,

or

(1)
o 1@
nl
For example, if f(z) = e® and a =0, then
™) 1
e
_e™(0) _ )

nl nl

which agrees with Eq’n (4). The substitution of Eq’n (7) into Eq'n (6) yields
the Taylor series or Taylor exrpansion

i

© (g
@) =3 T ap. ®
n=0

The particular case of Eq’n (7) obtained by setting a = 0, i.e.,

O ¢(n)
fe) =3 LOsn ©)

!
L.
n=0

is called the Maclaurin series.

While these formulas looks very powerful, they do suffer from some
disadvantages. To begin with, they are sometimes incorrect (see Exercise 8).
In addition, the computation of all the derivatives of a function is, generally
speaking, a difficult, if not impossible, task. Consider the function

f(z) =€

An attempt to compute all of its derivatives leads to complicated derivatives.
Instead, it is much easier to simply replace z with z2 in Eq’n (5) leading to

the expansion
o 2n

2 T
e = E S
n!

=0

EXERCISES 7.1

1. Find the first five nonzero terms of the Maclaurin series of the
following functions:
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1 1 2 1 1 1
d
Vi5m Vo7 9% 11 V1o 9122 Ditz-22
rz—1 r—1 1—=z 14 3z 1—z+ z2
h ; j k
g)1+9ar:2 )x2—:1:—1 ) 4 + z2 J)l—x3 )1—:{:'3-1—-.'1':‘1
3—2 .
1) - m) e”sinx

l—z+42%—23
2. Using a computer, find the first eight terms of the Maclaurin series
of the functions of Exercise 1.
3. Use the trigonometric formula

tan o + tan 8

e (Guliad) = 1 —tanatan B

to prove that

U tan™! —1- +ta,n—1l
4 2 3

Use Eg’n (2) through the z° term and a calculator to estimate

4 (ta,n‘1 % + tan™! %) .

Compare the resulting estimate of 7 with its actual value.

4. Use the trigonometric formula

tan o + tan A

tan(e + ) = 1 — tan o tan 3
to prove that

D i) Sl

A A )

Use Eq’n (2) through the z° term and a calculator to estimate

1 1
-1 -1
4 (ta,n 1 + tan ——239> .

Compare the resulting estimate of m with its actual value.

5. Use the methods of this chapter to show that the Maclaurin series

of sinz is
z3 5 7

x xr
ST 7}

6. Use at least two different methods to find the Maclaurin series of
COs .

8 = e

7. Let r be any nonzero rational number.
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a) Show that the function y = (14-x)" satisfies the differential equation
(1 +2)y =ry.

b) Use the methods of this chapter to prove that the coeflicients of the
Maclaurin series of this function staisfy the equations

r—k
Ck+1=m°ck, k=0,1,2,....

¢) Conclude that the Maclaurin series of y = (1 + z)" is

(1+w)r=1+<;)m+(;>m2+(;)x3+...

(r)zv‘(r—l)---("—’”l) k=1,2,3,....

where

k k! ’

d) Explain the relationship between this Maclaurin series and the Bi-
nomial Theorem.
8. Let f(z) be the function

[ e iz £0
f("”)_{o ifz = 0

a. Prove that
F™(0) =0 for each integer n =0,1,2,...

b. Describe the McLaurin series of this function and explain why it
converges for every value of x.

c. Conclude that the McLauring series of the function f(z) converges
for every = # 0 to a value that is different from f(x).

2 Taylor’s Theorem in One Variable

[he most obvious advantage of series expansions is that they facilitate the
(approximate) computation of many expressions that would otherwise be
very awkward to compute. All that needs be done to get a good approxima-
tion of \/e = €'/? is to compute an initial segment of the Maclaurin series of
e? for x = 1/2, say, for n =6,

py st T g T g5 5 %6l

8. @/ 11 1 1 1
> =1+ + = = -
i=0
5973

= 16080 ~ 1.6487196...
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which, our calculators tell us, is accurate to 5 decimal places. This brings us
to a general issue with approximations. No purported approximation is of
much use unless we have some idea of how good it is. In other words, every
approximation must be accompanied by some upper bound on its deviation
from the true value of the quantity that is being approximated. For this
purpose Taylor offered the following theorem.

Theorem 2.1 If the function f(x) has continuous derivatives up to the
(n+1)’th order in the interior of the interval I, and a is in the interior
of 1 then

o pk)
@) =3 @ - o + R,
k=0 '
where the remainder R, is given by
1 T
Ro= [ 1o OE -t

PROOF: Note that the variables z and a are independent of each
other. Define

Ro = Ba(z,0) = f(2) - Z’ ) (o ay

It is clear that
Ry(z,z) = f(z) — f(z) =0.

Moreover, the differentiation of R, with respect to a yields, by the product
rule,

- (k+1) (g *)(q
%(“” a)==2 [f—*h,—()(w ~a)f — L—,—Q!L—)k(x - a)k_l]

k=0

which sum collapses to

n!

_ l:—___ffflﬂ)(a) (x —a)* — 0:| .

By the Fundamental Theorem of Calculus

Ra(0,0) = Ra(@,0) ~ Bu(z,0) = | "l o tya

- /:_a;”( t)dt = — / £ @) (@ — t)ndt.
Q.ED.
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Lemma 2.2 Let f,g: [a,b] — R be continuous functions with g(x) > 0 then
there ezists a number n € [a,b] such that

/ ’ Fe)a()dz = £(n) / i@

PROOF: Let m and M be the respective minimum and maximum values of
f(z) in [a,b]. Since g(x) > 0 it follows that

m/ab g(z)dz = /ab mg(x)dx < /ab f(z)g(z)dx

< ‘/: Mg(z)dx = M/abg(x)dx.

Consequently there exists a number u between m and M such that

[ owria = [ st

Since
m<p<M
it follows from the Intermediate Value Theorem that there exists a number
7 € [a, b] such that
f)=u

and hence
b b
[ t@gte)iz = s f o(@)dz.
Q.E.D.

Proposition 2.3 (Lagrange) If R, is the remainder term of Theorem yyy,
then there exists a number 6 € [a — x,a + x] such that

)‘ﬂ. -1

Ra(z,0) = E=9 " pnin) g

(n+1)!

PROOF: This follows from an application of the lemma above to the pre-
ceding theorem. Q.E.D.

Corollary 2.4 If R, is the remainder term of Theorem yyy, and M is a
positive number such that

lFtD@) <M  forall 0€[a—z,a+x]
then ,
M(z — a)*+

[Bn(2, @)l < =7
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Example 2.5

In this section’s first example we offered a rational estimate for the value of
Ve = e'/2. Tt is now possible to add an estimate for the difference between
this estimate and the real value. We begin with a = 0,z = 1/2 and the
reasonable upper bound of 4. Since

lFr)(9) < ef < e'/2 < Vi =2,
we may set M = 2 and it follows that

2(1/2)" 1
7 322560

The actual value, correct to seven decimal places is 1.6487213. Note that
the difference between this actual value and the estimate is

~3.1-107°.

|R,| <

1.6487213 — 1.6487196 ~ 1.7-107°

which is indeed smaller than 3-10~% which is the Lagrange estimate of the
remainder.

It should be pointed out that the remainder estimates make it pos-
sible to give some of the formulas of the previous chapter a firmer logical
grounding.

Example 2.6 Prove that

o0
—1)"4 2n+1
sinx = E -((2?1—_::1)7 for all real z.

n=0

PROOF: Fix z and note that since the derivatives of sinx are all either
+sinz or £ cosx, we can use M =1 and so

| n+1
) < ——.
However,
£ 41
lim 2P iy __|x| =
n—oo |®|" n—oon + 1 ’
s
Hence
lim Ry(z,0) =0
n—eo
From which the desired result follows immediately. Q.E.D.

The Taylor polynomials of a function f(z) are polynomials that ap-
proximate f(z). For example the first degree Taylor polynomial of y = €*
is

y=14z
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y=1+2

-0.5

Figure 1: Linear approximations to the exponential curve

whose graph is the straight line tangent to y = €® at (0, 1). Now every
straight line y = 1 4+ ma through (0, 1) also approximates the exponential
curve in the sense that

lim —(1+4+mz)=0.

r—0e®

What distinguishes the tangent line y = 1 + & from all of the others is that
it provides the best approximation. This is visually clear from Figure xxx
and can be algebraically demonstrated as follows. Because 1 + x is a Taylor
polynomial it follows from Corollary 2.4 that for z sufficiently close to 0 (i.e.,
z such that —2 < €% < 2)

1+ — €| = |Ru(e,0)] < %ﬁ-z — 2
However, for each other line y = 1+ mx, m # 1 and for sufficiently small z,
1+ mz—e*|=|(m—1z— (e —1—2z)|
> |(m—1)z| - |(e* ~ 1 - &) = |(m — 1)z)| — 2°

Im — 1
2

>

z>>z? = Ry (z,0).

These considerations motivate a definition. The function f(z) is said to
vanish to order n at a provided

fl@)=f@) =f(a)=...= f™(a) =0

For example, z3 vanishes to order 2 at 0, (x — 3) vanishes to order 4 at
3, * — sinz vanishes to order 2 at 0, sin® z vanishes to order 2 at integer
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multiples of 7, and (22 — 1) vanishes to order n at z = +1. Two functions
f(z) and g(z) are said to have contact of order n at a if their difference

f(@) —g(z)
vanishes to order n at a. The polynomial functions
2+x—3z2+72* —2% and 2+ —32% —2° —2f
have order of contact 3. The functions sinz and = have order of contact 2.

Theorem 2.7 Let f : D C ® — R have n + 1 continuous derivatives in
some interval. Then the Taylor polynomsial

®) (g
T,@,0) =3 =Dz - o

k=0

1s the unique polynomial of degree at most n that has contact of order at least
n with f(z) at a.

PROOF: It is clear that the T,,(x,a) has the required contact with f(x).
Conversely, let T, (z,a) be any polynomial of degree at most n that also has
contact of order at least n at a. Hence

To(z,a) — T, (x,a)

vanishes to order n at a. It follows that the polynomials T and 7" have
identical coefficients and so they must be equal. Q.E.D

EXERCISES 7.2

1. Use the remainder estimates to prove that

1-::. 2n

cos:v—z( @n)! for —1<z<1.

2. Use the remainder estimates to prove that

e = Z % for all real z.
n=0

3. Use the remainder estimates to prove that for every rational number

(e o]

(1+x)r=z<;>wn forall —1<z<1.

n=0
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4. Use the methods of this section to obtain a rational estimate of
e that comes to within 1075 of its true value. (Go ahead and assume that
e < 3).

5. Use the methods of this section to obtain a rational estimate of
V/1.6 that comes to within 107° of its true value.

6. Use the methods of this section to obtain a rational estimate of
1.5%/7 that comes to within 1073 of its true value.

7. Use the methods of this chapter to obtain a rational estimate of
In 1.5 that comes within 1075 of its true value.

8. Use the remainder estimates to prove that for all  such that -1

<zx<l1 -
_1\n-1,.n
1n(1+m)=z%—m'

n=1

3 Taylor Polynomials in Two Variables

The informal methodology that was used in the beginning of this chapter to

introduce the theory of Taylor series applies to functions of two, or more,
variables as well. For example, by Eq’n (1) and the Binomial Theorem,
1 . 1

l-z—y 1—(x+vy)

=l+z+y+@+y)’+@+y)°+

o0
= Z ( i >xmy", provided |z| + |y| < 1. (10)
mn= Uy
Similarly,
n(@ )™
cos(c +y) = ,;)( 1) -
2

oo 2n ( 1)n ( " )

— Z Z mmyZn—m
2. 2. )]

The differentiation process that yielded the coefficients of the Taylor series in
Section 1 can also be applied to functions of two variables. If the coefficient
of the term (x — a)™(y — b)"™ in the Taylor series, assuming there is such a
series, is denoted by ¢pn, then

f@y)= Y cmnle—a)™(y—b)"™
m,n=>0

To derive the value of a specific coefficient cn,, we first differentiate this
equation m times with respect to x and n times with respect to y. If we
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substitute £ = a,y = b we obtain

am—l-n
Wf;(a, b) = cm,n’m!'n,!
and hence ) i
Cmpn = ! (a,b). (11)

mln! dx™IyYy"
Example 3.1 Use Eq’n (11) to find the coefficients of the Taylor series of

1
_w_y'

f(w>y) =i

Straightforward applications of the chain rule to (1 —z — y)~! yield
omf

Ev'r—n' =m'(1 —.’E—y)_m

and

o (omf ) _ iy
oy <8wm - dzmay"
=mim+1)(m+2)...(m+n)(1—z—y) ™"

__ (m+n)
T (l-z—y)mn
It follows that for (a,b) = (0,0) we have

emn = —— - (m +n)l(1 — 0 — 0) ™"

min!
_(m+n)  (m+4n
T omlnl m

which agrees with (10).

The Taylor polynomial of degree n of the function f(z,y) is the finite
partial sum

To(@:b) =D > 5 L_PH@h) o _apg-nmr 12)

—_— 1 k' m—k
v (m — k)! 0~y

For example, the Taylor polynomials of degrees n = 0,1, 2,3 of the function

1
flz,y) = oy
are, respectively,
T()(J/', y) . 1,

Ti(z,y) =1+z+y,
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To(z,y) =1+z+y+ (z+ )%
and

Ta(z,y) =l+z+y+(+y)?+ (@=+y)

This can be verified either by examining Eq’n (12) or by computing all
the necessary derivatives. As happened in the single variable case, such

polynomials are often computed without resorting to the formula of Eq’'n
(12).

Example 3.2 Compute the Taylor polynomial T5(0,0) for the function
f(z,y) = € +siny.

It follows from the previous section that

2 3
T z
=1 —+—=+...
e +a:+2+6+
and /7
smy=y—-6~+...

Hence, for f(z,y) = €® +siny

2 3 3
T5(0,0) = 1+s+y+ 5+ + % +...

Example 3.3 Compute the Taylor polynomial T3(0,0) for the function

f(z,y) = € siny.

Here ) 5 )
T L e, _¥
esmy—(1+x+2+6+...)(y 6+...)

and hence ) 5

T3(0,0)=y+wy+-$2—y—%+...

Example 3.4 Compute the Taylor polynomial T3(0,0) for the function

c:l:

f(w,y)=m-

Here
f(z,y) =€*(1 —siny + sin2y — sin® y+...)
2 3

=(1+m+-w2—+%+...)><
3 3 3
Y Y Y



3 TAYLOR POLYNOMIALS IN TWO VARIABLES 14

2 3 3

x x oY

=1 —+ —+... 1- 2 _

(+x+2+6+ )X (1—y+y 6)

z? 2 x?y 5y3
=1 - o ¢ - 2— “ea

+r—y+ 5 zy+y°+ 6 3 + zy 6 +
and so

2 23 z2 By3
T3(0,0)=1+w—y+%—xy+y2+g——§£+xy2—%

There is a simple device that greatly facilitates the rigorous discussion
of Taylor series of two variables by reducing them to the series of a function
of a single variable. We demonstrate this procedure with a simple case where
(a,b) = (0,0) and n = 2 which will turn out to be very useful in the next
chapter in a very general setting. Let f(z,y) be a function with continuous
partial third derivatives. We define an auxiliary function

F(t) = f(=t,ut)
and note that F(0) = f(0,0) and F(1) = f(z,y). By the results of the
previous section we have
F(t) = F(0) + F'(0)t + %F”(O)t2 + Ra(t, 0).
However, by the chain rule
F'(t) = fi(zt,yt)z + fa(xt, yt)y

F"(t) = fi1(xt, yt)a® + 2 frz(xt, yt)zy + foo(zt, yt)y®
so that
f(xa y) = f(07 0) + f1(07 0).’1: + f2(0a O)y

710,008 + 5.7(0,0)2y + F22(0,0)4° + Ba(1,0).

Here
R»(1,0)

1
— g{msfm(@ﬂc, 0y) + 322y f112(0z, 0y) + 3zy? fi22(62, 0y) + ° fara (0, 0y)}
Hence, for some M

IRa(1,0)] < 3 (1ol + ly)? (13)

Let (a,b) be a fixed point in the domain of the real valued function
f(z,y) which is assumed to be infinitely??? differentiable. Define a new
function

F@) = f(a+ (z —a)t,b+ (y — b)t).
Note that
F(0) = f(a,b) and F(1)= f(z,y).
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It follows from repeated applications of the chain rule that
F'(t)=(@~a)fa+ (y—b)fy
F'(t) = (2 — 6)*fou + 2(z — a)(y ~ ) fay + (y — D) i

n

FO0) =@ =o' fen+ (] ) 0= 0"y 0)feny

(5 ) @0 2= e+t =0

or, using symbolic notation,

F™ () = (@ — a) fz + (y — ) £]™.
Theorem 3.5 Let f: D C ®2 — R which is infinitely differentiable. Then

f@,y) = f(a,b) + {(x — a)) fz(a,b) + (y — b) fy (e, b)}

+% {(@ = 0)? fan(a,b) + 2(z — a)(y — b) fay (@, b) + (¥ — b)2fyp(a, b) }
+ ...

ra{E-arie@y+ (] )@= - D@

oot (= D) fyn (0 )}
+Ry,
where, for some 0 < 6 < 1,
R = oy (o~ 0)fela-+ 6o = )b+ 6y =)
+ (= D)yl + 6z - a),b+6(y - B

PROOF: Apply Taylor’s formula with Lagrange’s form of the remainder to
the function F'(t) and then set t = 1. Q.E.D.

Theorem 3.6 (Alternative form)

n

FEw) =Y 5l — a)fula,b) + (- B)fya, B,

k=0
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Theorem 3.7 (Alternative form)

n

fey) =Y. i@~ a)fe + (0~ B (a,b) + Rn

k=0
where

_ 1
T (n+1)

Note that ”in general”

Ro=o{(V/(z—a)?+(y —0)?)"} as (z,y) — (a,})

Ry, [(z~a) fot+(y—b)£,]™ V) (a+6(z—a), b+8(y—b)), 0<O<1.

EXERCISES 7.3

1. Find the Maclaurin series of €**¥ in two ways.

2. Find the Maclaurin series of sin(z + y) in two ways.
3. Find the Maclaurin series of cos(z + y) in two ways.

4. If r is a rational number, find the Maclaurin series of (1 + = + y)"
in two ways.

5. Find the Taylor polynomial of degree 3 for each of the following
functions at (a = b = 0).
xz

e e®

a.tan(z +y) b.sin(ycosz) c.cos(y+ cosz) g y ST+ cosy

4  Irigonometric series?

EXERCISES 7.4



