4. INTEGRATION IN VECTOR FIELDS
September 16, 2009

1 Line integrals

Consider a wire W in either the plane or space, with variable mass density.
It is natural to ask for the total mass of W. In fact, a special case of this is
usually discussed in first year calculus where the wire in question is assumed
to be a straight line segment, say the interval [a, b] on the z-axis. The wire’s
mass is then given as

/a ’ s(a)de 1)

where §(z) is the mass density at (x,0). The rationale behind this is that if
the length of a small segment on the axis is denoted by Az, then its mass is
(approximately) the product

(x)Ax

and hence, by the Fundamental Theorem of Calculus the total mass of the
wire is )
/ 8(z)dz.
a

This motivates the following definition. If f : D — R and C(¢t) C D, t € [a, }]
then the (scalar) line integral of f along C is denoted by

[ sas @

where s denotes arclength along C. Since arclength parametrizations are
hard to come by, we use the equation

s _ v
S =1c)

and the method of integration by substitution to convert the integral of (2)
into the easily computed

[ﬂamwmw 3)
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Example 1.1 A wire has the shape of the curve C(t) = (¢,t%,¢3),0<t<m
and mass density
o(z,y,2) =sinz.

Find the total mass of this wire.

Clearly
|IC' ()| = |(1,2¢,3t%)| = V1 +4t2 + 9t4

Hence, by Eq’n 3, the total mass is
aw
/ sinty/1+ 442 + 9t4dt = 479.20 ....
0

Equation (3) can be given an alternative, more symbolic, interpreta-
tion. Recall that if s denotes arclength along the curve C(t), then

ds
= =€)

or, pretending that ds and dt are genuine numbers,
ds = |C'(t)|dt
which explains how (2) can be transformed into(3).

It is tempting to ask for an interpretation of the line integral as an
area. After all, much time was spent in first year calculus explaining how
areas can be computed using definite integrals and many students identify
the two. This cannot be done for line integrals in a natural way . Something
of interest will be pointed out below, but the readers should abandon the
notion that integrals must represent areas. It is much better for the sequel
to think of any integral as a continuous summation process.

The scalar line integral was defined in terms of an arclength parametriza-
tion of the underlying curve. Such choices are not unique and could, in prin-
ciple, affect the value of the integral. We proceed to show that such is not
the case. This is not obvious as another important integral will be defined
below whose value does indeed depend on the parametrization.

Let s and 5§ denote two arclength parameters of C where

a<s<bh c<s5<d
Geometric considerations make it clear that there is a constant k& such that
s=5+k or s=—-5+k.

Define -
f(3) = f(s).



1 LINE INTEGRALS 3

In the first case,
b d d d _
/C fds = /a f(s)ds = / F(a+ k) Z2ds = / F(G+k)ds = /C Fds.

In the second case,

/Cfdszfabf(s)ds=/dcf(§+ k)ggd§=/cdf(—§+k)(—1)d§=/Cfd§.

Proposition 1.2 The scalar line integral is independent of the arclength
parametrization.

O

A vector field is a function F : " — R™.
F(z,y) = (#? +y,y° —sinz)
F(z,y) = (€ — 1+ 2y,In(1 +¢%) — 1)
F(z,y,2) = (zyz,zy, T)

F(m7 y’ z’ w) = (w’ w) y) z)

It is a good idea to visualize a vector field as a collection of arrows
F(z,y) each of which is anchored at its domain point (z,y).

Example 1.3 Use a computer package to draw the vector field

F(z,y) = (z,9)

See Figure 1.
Example 1.4 Use a computer package to draw the vector field

F(x’y) = (—y!x)

See Figure 2.

Example 1.5 Use a computer package to draw a 2-dimensional gravita-
tional field.
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Figure 1: A source-like vector field
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Figure 2: A rotational vector field
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Figure 3: A gravitational vector field

A fixed mass at the origin induces a gravitational force F on a unit mass at
the point r that is directed towards the origin and whose length is inversely
proportional to |r|?. Since the outward directed unit vector at r is

r__(=y
Ie| /2?4942

it follows that, for some positive number c,

F(:z:,y) - —{a:,y) c = —C(-’L',y)

V22 + 7> ' (z2 + y?) a (22 + yz):j,fz'

This field is displayed in Figure 4.

Steady state flows, that is, flows whose velocity vector at each point
remain constant over time, also constitute vector fields. For example in
Figure 4 is displayed the velocity field of a straight wide river. Figure 5
portrays the vector field about a whirlpool. For such 2-dimensional flows, it
is reasonable to ask how much flows across an arc and how much flow along
an arc. Higher dimensional flows will be discussed subsequently.

We next stipulate a (velocity) flow

F(.’B,y) = (Fl(xay)7F2(x,y)) or F= (Fl,F2)
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Figure 4: The velocity flow of a straight wide river
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Figure 5: The velocity flow of a whirlpool



1 LINE INTEGRALS 9

Positive
¢ flow

Negative
flow

Figure 6: The unit normal and tangent to a curve

and a parametrized curve
C(t) = (z(t),y(t)), a<t<b
If t = t(t) denotes the unit tangent of C(t), i.e., if

C'(t)

0= low)

and As denotes the length of a small arc a of C containing the point C(t),
then the infinitesimal flow of F along « equals the length of the projection
of F onto t multiplied by ds, or, symbolically,

F - tds.

Consequently, the total flow along C, otherwise known as the circulation of
F along C, is (defined as)

F - tds.
C

Since, as noted above, arclength parametrizations are hard to come by, we
again make use of the equation

Lo

to convert this symbolic scalar line integral into the easily computed form

() o
/ F Gy €Ol = / F.C/(t)dt @)

Example 1.6 Let F = (zy?,y + 2°) and C(t) = (3t3,2¢3),1 < ¢t < 2.

Evaluate
/ F -ds.
C
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By Eq'n (4)
2
/ F-ds= / ((3t2)(2t3)?, (2t + (3t)3) - (6t, 6t%)dt ~ 16,689.6.
C 1

Example 1.7 Let F = (zy2?,2x%yz, 3ry%2) and C(t) = (2t,3t2,5t%),0 <

t < 2.. Ewvaluate
/ F -ds.
JC

/F-ds
C

= / 2((2t)(3t2)(5t3)2,2<2t)2(3t2)(5t3), 3(2t)(3t%)*(5¢%)) - ((2, 6¢, 15¢%))dt
0
= 825, 716.

Since F = (F1, F) and C'(t) = (2/(t),y'(t)) the expression in (4) can
be converted to

By Eq’n (4)

b
/ (R (8) + Foy/ ()t = / " Pl (t)dt + / By (8)dt.

Q

The substitutions z = z(¢) and y = y(t) convert these integrals into

/F1d$+/ ngy.
C C

The sum of these integrals is denoted by the suggestive symbol
= / Fide + Fady. 5)
C

Example 1.8 Fvaluate [(x + y)de + zydy where C = (t,t%),1 <t < 2.

Here F = (z + y,y). Consequently

/(a:+y)da:+xydy=/F-ds
c c

_ / (4 9), H2) - (1, 24)dt = 487/30.
1

Example 1.9 Fualuate [ (z+y+2)dz+zyzdy—xdz where C = (1, t2,1%),0 <
t<1.

Here F = (z + y + 2, zyz, —z). Consequently

1
/F-ds=/ (t+ 2 + 83,123, —t) - (1,2t,t%)dt = 35/6.
C 0
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Example 1.10 Evaluate [,(z+y+ 2)dz +zyzdy — xdz where C is the line
segment from the origin to the point (1, 2, 3).

Here F = (z + y + z,zyz,—). The line segment C has the parametric
equation
C(t) = (t,2t,3t)

and hence
C'(t) = (1,2,3).

Hence,

1
/ F.ds = / (t+ 2t + 3¢, 1(26)(3), —t) - (1, 2, 3)dt
C 0
1
== / (6 + 12t* — 3t)dt = 7.5.
0

Example 1.11 Bvaluate [,(x + y)dx + xydy where C is the polygonal line
that consists of the horizontal line from (1,1) to (3,1) followed by the vertical
line from (3,1) to (3,5).

Here F = (x + y,zy). Let C; denote the segment from (1,1) and Cs the
segment from (3,1) to (3,5). The segments have the following parametriza-
tions:

Ci(t)=(t,1), 1<t<3

Co(t) =(3,t), 1<t<5.

Hence,
3
/ F-ds=/ (t+1,8) - (1,0)dt = 6
Cq 1
and 5
/ F-ds=/ (3+1¢,3t) - (0, 1)dt = 36.
C, 1
Consequently

/F-ds:/ F-ds+/ F.-ds=6+36 =42.
C C, C2

Example 1.12 Ewvaluate fc(x2 + y?)dz + 2zydy where C is the counter-
clockwise circle of radius 2 centered at the origin.

Here F = (22 + y?,2zy) and C(t) = 2(cost,sint), 0 <t < 27. Conse-
quently,
/ F-ds
C

2m
= f (4cos?t + 4sin®t,2costsint) - (—sint, cost)dt = 0.
0
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Let F be a flow and C a curve in ®2. To quantify the total flow of
F across C, it is necessary first to establish a convention regarding positive
and negative flows across a curve. We shall agree to regard as positive a
flow that crosses the curve from left to right from the point of view of the
tangent to C.

The flow across the small arc « is the product of the projection of F
onto the normal n(t) at C(t)) with the length of «, that is,

F . nAs.

Hence the total flow across C is

/F-nds.
c

This is the symbolic form of the total flow of F across C. Its computational
form is obtained by recalling that the positive flow direction is obtained by
a clockwise 90° rotation of the tangent, the total low becomes

o WO, 0)
|y B o @

b
=f [—Foa!(t) + Fiy/ (t)}dt (6)

=/ —F2d$+F1dy.
C

Example 1.13 Let F = (zy?,y + %) and C(t) = (3t%,2t3),1 <t < 2.
Evaluate the total flow of F across C. By Eq’n (6)

2
/ F-nds = / — (2% + (3t%)3) - 6t + 3¢2(2t%)? - 6t%dt
C 1

= 2022.25.

Since C'(1) = (6,6) it follows that the overall direction of the flow is from
the side of C containing (0, 1) to the side containing (1, 0).

Example 1.14 Let F = (2 —y%,y+x). Find the total flow of F across the
line segment from (0,1) to (1, 0).
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The line segment in question can be parametrized as
Cit)=(¢1-1t), 0<t<L

Hence

/ F - nds /1[-((1 S8 +8) 14 (2 — (1= BR)(=1))dt = —1.
C 0

Since C'(t) = (1, —1) it follows that the positive direction is from the origin
to the point (2, 2). Consequently we have a total flow of 1 in the opposite
direction, from (2, 2) to the origin.

Example 1.15 Let F = (z?—y?,y+z). Find the total flow of F across the
polygonal line C from (1, 1) to (1,3) and from there on to (5,3).

Note that dz = 0 along the first part of C and dy = 0 along the second part.
Consequently, the total flow across C is

/ —(z +y)dx + (2% — y?)dy
C

3 5 92
=o+/ (1—y2)dy+/ @+ +0 =%
1 1

Example 1.16 Determine the total flow of the field

_ _{il?, y)
- (3:2 + 92)332

across the circle C of centered at the origin.

The circle C can be parametrized as 2(cost,sint),0 < t < 2w. Consequently
the total flow across C is

Y @
Y
/C (22 + y2)3/2 (22 + y2)3/2 Y
2m t oy
=/ 22;jmt(—Zsint)—2005'5(2cost) dt = —m.
0 8 8

Since the parametrization is counterclockwise the unsigned total flow is di-
rected into the circle.

It is necessary to investigate the extent to which line integral

/CF-ds (7)
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/u

Figure 7: A curve and its inverse

depends on the parametrization of C. Since this parametrization does not
appear explicitly in Eq’n (7) and hence it might be tempting to assume that
just like the scalar line integral of Eq’n (2) this integral is also independent of
the parametrization. Such, however, is not the case. Notice that whereas the
vector field F is indenpedent of the parametrization, the unit tangent t has
two possible values that depend on the sense in which the parametrization
traverses C. Let us examine now the effect of reversing the traversal of the
parametrization.

Let s be an arclength parameter of C, a < s < b. Then 5 = —s is also
an arclength parameter of C. If t and t denote the respective unit tangents,
then

t=-t

F-t=-F-t

and hence the scalar integrals of F -t and F - t are negatives of each other.
Thus we have the following proposition:

Proposition 1.17 The line integrals of two parametrizations of a curve are
either equal or negatives of each other depending on whether they traverse
the underlying curve in the same or opposile senses.

|

An oriented curve is one for which a gense of traversal has been spec-

ified. This sense of traversal is called an orientation of the curve. Thus,

every curve has two orientations. These orientations are designated by an

arrow on the curve (Fig. 7). If C is an oriented curve, then the oppositely

oriented curve is called the inverse of C and is denoted by C~!. It is clear
that

(chH7=c.

It follows from Proposition 1.17 that if F' is a field whose domain contains
the curve Cthen

/C_IF-dsz—/CF-ds (8)

If C and D are two oriented curves such that the terminal point of C
is also the initial point of D then their union is denoted by

C+D.
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cC+D

e g

c D

Figure 8: A curve and its inverse

It is clear that

/ F-ds=/F~ds+/F-ds. (9)
C+D C D

EXERCISES 4.1

1. Evaluate [ fds where f(x,y) = 1+2z—3y and C(t) = (1+2¢,2—
3),0 <t <3.

2. Evaluate [ fds where f(z,y) = 142z —3y and C(t) = (1 +12,2—
t3),0 <t < 3.

3. Evaluate [ fds where f(x,y) = 1422 -3 and C(t) = (¢2,1%),0 <
t < 3.

4. Evaluate [; fds where f(z,y,2) = 1+ 2z — 3y + 2 and C() =
(1+2t,1+3t,1+4t),0<t<3.

5. Evaluate [ fds where f(x,y,2) = 1+ 2z — 3y + 2z and C(t) =
(t2,13,1),0 <t < 3.

6. Evaluate [ fds where f(z,y,2) = 1+ 2z — 3y + z and C(t) =
(1+2t,1+3t,1+4t),0<t<3.

7. Evaluate [ fds where f(2,y,2) = 1+ 2x — 3y + 2z and C is the
line segment from (1, 2, 3) to ( 3, -2, -1).

8. Evaluate [, F - ds where F(z,y) = (2¢ - 3y,2? + y) and C(t) =
(1+2t,1+3t),0<t<1.

9. Evaluate [ F - ds where F(z,y) = (2z — 3y?,2? —y) and C(t) =
(t2,13),0 <t < 2.

10. Evaluate [ F -ds where F(z,y) = (cos + cosy,sinzsiny) and
Ct)=(1+2t,1+3t),0<t <.

11. Evaluate fg F-ds where F(z,y,2) = 2z —3y%> + 2,22 —y—22,z+

y— z) and C(t) = (#%,¢,13),0 <t < L.

12. Evaluate fc F-ds where F(z,y,2) = 2 —3y% + 2,22 —y— 22,0+
y — z) and C is the line segment from (1, 2, 3) to (3, -2, -1).

13. Evaluate [, F-ds where F(z,y,2) = 2z — 3y’ + 2,22 —y—2z, 2+
y — z) and C is the line segment from (3, -2, -1) to (1, 2, 3).

14. Evaluate [oF -ds where F(z,y) = (2z — 3y, z2 +1y) and C is the
polygonal line from (1, 1) to (1, 5) and from there to (6, 5).

15. Evaluate [, F -ds where F(z,y) = (222 — 3y, z +y?) and C is the
polygonal line from (1, 1) to (5, 1) and from there to (5,6).
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16. Evaluate [oF -ds where F(x,y) = (2 — 3y,z + y) and C is the
circle of radius 5 centered at the origin.
17. Evaluate [ F -ds where F(z,y) = (22 — 3y,2 +y) and C is the
circle of radius 5 centered at (1, -1).
18. Evaluate [oF - ds where F(x,y) = (2¢ — 3y,x + y) and C is
counterclockwise ellipse
22 .
5 tg=1
19. Evaluate [o(22+y)dz+(y—2x?)dy where C(t) = (14-2t,143¢),0 <
t<1.
20. Evaluate [o(z® +y)dz + (y — 222)dy where C(t) is the polygonal
path from (2, 0) to (-2, 0) and from there to (-2, -4).
21. Evaluate fC cos ydx + sin 2xdy where C is unit circle of radius 1
centered at the origin.
22. Evaluate [ F - nds where F(z,y) = (2z — 3y, z? +y) and C(t) =
(14+2¢,1+3t),0<t<1.
23. Evaluate [, F -nds where F(z,y) = (2 —3y?,2% —y) and C(t) =
2, t3),0<t <2
24. Evaluate [oF - nds where F(z,y) = (cosz + cos y,sinzsiny) and
C(t) = (1+2t,1+3),0<t<m.
25. Evaluate [ F-nds where F(z,y) = (22— 3y?,2% —y) and C(t) =
t%,13),0<t < 1.
26. Evaluate [oF -nds where F(z,y) = (2z — 3y%,z? —y) and C is
the line segment from (1, 2) to (3, -2).
27. Evaluate the total flow of the field F(z,y) = (2z — 3y,z? + y)
across the polygonal line from (1, 1) to (1, 5) and from there to (6, 5).
98. Evaluate the total flow of the field F(z,y) = (222 — 3y, z+y?) and
C is the polygonal line from (1, 1) to (5, 1) and from there to (5,6).
29. Evaluate the total flow of the field F(z,y) = (22 — 3y, x+y) across
the circle of radius 5 centered at the origin.
30. Evaluate the total flow of the field F(z,y) = (22 — 3y, x +y) across
the circle of radius 5 centered at (1, -1).
31. Evaluate the total flow of the field F(z,y) = (22— 3y, x+y) across

counterclockwise ellipse
72 2
971

lfd

= s

(=2}

2 Surface integrals

We begin with the integration of scalar functions on a surface. Let f : D —
3 and let S C D be a parametrized surface in ®3. The points S(u, v), S(u+
Au,v), S(u+ Au, v+ Av), S(u, v+ Av) form a near-parallelogram whose area
is approximately

|(S(u + Au, v) — S(u,v)) X (S(u,v + Av) — S(u,v))|
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S(u+Au,v+Av)

[

S(u,v+Av)

S(u+Au,v)

S(u,v)

Figure 9: A surface element

~ |SyuAu X SyAv| = |8y X Sy|Auly,
which, by Lagrange’s identity, equals

vV (Su - 8.)(Sy, Su) — (Su - Su)(Sw - Su)Aulv = V EG — F2Aulv

where

E=8,-Sy, F=8,-5,=8,-5,,G=85,-8,
Consequently

/ /S fds = / /D fVEG — F2dudv. (10)

Example 2.1 The hemisphere of radius 2 that is centered at the origin and
lies in the upper halfspace z > 0 has mass density 4+x+y at the point above
(x,y). Find the total mass of the hemisphere.

This hemisphere can be parametrized as (see Fig. 10)
S(u,v) = 2(cos usin v, sinusinv, cos v)
and so
Sy = 2(—sinusinv, cos usinv, 0)

Sy = 2(cos u cos v, sinu cos v, — sin v).



2 SURFACE INTEGRALS 18

[\N]

rsin v

X =rcosusinv
y =rsinu sin v
Z = ¥COS V

Figure 10: A parametrization of a sphere of radius r



2 SURFACE INTEGRALS 19

Thus,
E=8S, S, =4sin*v
F=§,-5,=0
G=8,-S,=4

VvV EG — F?2 = 4sinv

Consequently the mass of the hemisphere is

/2 P2
/ (4 + 2 cos usinv + 2sin usin v)4 sin vdudv = 327,
o Jo

The surface which constitutes the graph of the function

Z=f(.’l:,y)

can be parametrized as

S(z,y) = (z,y, f(z,9)).

Here
Se = (1a07 f:c)’ Sy = (Oa 5 fy)

Consequently
E=8;-8S; =1+ f2

F=Sx‘sy=.fmfy
G=8,-S,=1+f

VEG—F = \[(1+ )1+ £) - (fofy)? = \[1+ 2 + 72.

Example 2.2 The surface z = 2% + 32,0 < z,y < 2 has density function
0(z,y) =14z +y. Compute its total mass.

Here

VEG — F? = \/1+ (22) + (2y)?

The mass is

2 2
/ / 1+ 2z +y)V/ 1+ 422 + dy’dady = 42.35. .. .
o Jo

When F is a 3-dimensional vector field, it is no longer meaningful to
ask for its flow across a curve. However, it is reasonable to wish to quantify
the flow across a surface S. By analogy with the discussion above, we need
simply project F onto the unit normal of S and then integrate the length
of this projection over the surface S. Granted, this is a bit oversimplified.
There is the issue of establishing this normal.
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Referring to Figure 7, note that the normal n to the surface at S(u, v)
is the limiting position of the normal to the triangle formed by S(u,v),
S(u + Awu,v), and S(u,v + Av). The normal to this triangle has the same
direction as

[S(u + Au,v) — S(u,v)] x [S(u,v + Av) — S(u, v)]
and, by the Mean Value Theorem its limiting position is
S. x S,. (11)

This means that the vector above is normal to (the tangent plane of S) and
we select it as the positive direction of the flow. Of course, care must still
be exercised. While the line of direction of this vector is independent of the
parametrization, its actual direction can vary by a factor of -1. In other
words, the choice of another parametrization can result in reversing the nor-
mal.

Example 2.3

Consider the surface which consists of the graph of z = 22 4+ y2. As noted
above it can be parametrized as S(z,y) = (z,y, 2% + y?) so that

Sz x Sy =(1,0,2z) x (0,1,2y) = (—2z,—2y,1).

At the origin this gives a normal of 1. However, the same surface can be
parametrized as S(z,y) = (—=,y, 2% + y?) in which case

S, x 8, = (—1,0,2z) x (0,1,2y) = (—2a,2y, —1).
This time the normal at the origin is (0, 0, -1).

Let F = (F, F,, F3) be a 3-dimensional field and let the surface S be
parametrized as

S(u,v) = (z(u,v),y(v,v),2(u,v)), (u,v) € D.

We define the total flow (fluz) of F across S as

//F-ndSz// Su XS /B~ Frdudy
S D

|S X Syl

_ / /D F - (Su X S)dudv.

Example 2.4 Compute the total flow of the field F = (z,z + y,x + y — 2)
across the upper hemisphere of radius 2 centered at the origin.
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Using the parametrization of Example 2.1, we get
Sy X S, = —4sin v(cos u sin v, sin u sin v, cos u)
F (S, xS,) = —4sinv(cos usinv,sinusinv, cos u)
-(cos u cos v, oS U €OS ¥ + Sin u cos v, cos % cos v + sinu cos v — sin v)
®/2 pr2m
/ / F - (Su x Sy)dudv = ~147/3.
0 0
Note that the normal at S(0,7/2) = (2,0,0) is
(Su % 8y)(0,7/2) = (—4,0,0)

which is directed into the interior of the surface. Hence the total flow is
147/3 out.

There is a useful higher dimensional analog of Eq’n (5). If

S(u,v) = ((2(u, v), y(u, v), 2(u, v))
Then

Sy X8, = (yuz'v — Yv2u, 2Ty — ZyTyy Tuly — x'uyu)

F. (Su X Sv) = (yuzv . yvzu)Fl + (zuxv - zvmu)F2 + (xuyv - mvyu)F3

//SF-dS

= / / (Yu2o — Yo2u) Frdudv + / / (2uZy — 29Toy) Fodudv
] S
+ / / (Tuyv — Tyyy) F3dudv
S

We now evaluate the first of these three integrals by setting u = y,v = 2

and obtain
//((1 -1-0-0)Fidydz = // Fidydz.
S S

The other two integrals are evaluated by setting u = 2, v =zx and u = z,v =
y respectively. These three evaluations yield

//F-dS =//F1dydz+F2dzda:+F3dxdy.
S S

Example 2.5 Compute the total flow of the field F(z,y,2) = (z,z +y,x +
y — 2) across the surface of the cube whose vertices all have coordinates 0 or
1 (Figure 11).

and so
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Figure 11: A cube

The faces ABCD and EOFG can be parametrized as (1,y, 2) and (0, y, 2)
respectively, for both of which the normal is

S, x S, = (1,0,0).

For these faces dz vanishes and hence the flows across these faces are

1,1 1 p1
/ / ldydz =1 and / / Odydz = 0.
o Jo o Jo

The faces DCFG and ABOE can be parametrized as (z,1, z) and (z,0, 2)
respectively, for both of which the normal is

S, x S, = (0,~1,0).

For these surfaces dy vanishes and hence the flows across these faces are

1 1 3 1 1 1
/ / (x4 1l)dzdz = = and / / (z +0)dzdz = .
o Jo 2 o Jo 2

The faces ADGE and BCFO can be parametrized as (z,y,1) and (z,y,0)
respectively, for both of which the normal is

Sz x 8y, =(0,0,1).

For these surfaces dz vanishes and hence the flows across these surfaces are

1,1 1 01
/ / (x+y—1)dedy =0 and / / (z+y—0)dedy = 1.
o Jo o Jo

Taking account of which normals point into the box and which point out,

the total flow out of the box is
3 1
1-— - ——40-1=1.
0+2 2+

EXERCISES 4.2
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1. The hemisphere of radius 2 that is centered at the origin and lies
in the upper halfspace z > 0 has mass density x2 + y2 at the point above
(z,y). Find the total mass of the hemisphere.

2. Let F = (y — 2z, 2z — 2y, x — 2z). Compute the total flow of F across
the surface of the previous Exercise.

3. The hemisphere of radius 1 that is centered at the origin and lies in
the upper halfspace z > 0 has mass density 2 + zy at the point above (z,y).
Find the total mass of the hemisphere.

4. Let F = (y — 2z, z — 2y, z — 2z). Compute the total flow of F across
the surface of the previous Exercise.

5. Show that the surface area of the sphere of radius R is 47 R2.

6. Find a formula for the area of the lateral surface of a circular
cylinder of height h and whose base has radius R.

7. Find a formula for the area of the lateral surface of a right circular
cone of height A and whose base has radius R.

8. Find the area of the portion of the plane x + 2y 4+ 3z = 12 in the
first octant.

9. Let F = (y — 2z, 2 — 2y, z — 2z). Compute the total flow of F across
the surface of the previous Exercise.

10. If the mass density is 6(z,y, z) = 1+ +y + 2, find the total mass
of the sphere of radius 1 centered at (1, 1, 1).

11. Let F = (y — 22,2z — 2y,z — 22). Compute the total flow of F
across the surface of the previous Exercise.

12. If the mass density is §(z,y,2) = 1+ 2z +y + 2, find the total mass
of the surface the cube whose vertices have coordinates 1 or 2.

13. Let F = (y — 2z,z — 2y,z — 2z). Compute the total flow of F
across the surface of the previous exercise.

14. Find the area of the portion of the graph of z = 4 — z2 — y? above
the zy-plane.

15. Let F = (y — 2z,z — 2y,z — 2z). Compute the total flow of F
across the surface of the previous Exercise.

3 Some Standard Parametrizations

Straight line:
x(t) =a+bt= (a1 + bit, a0 + bot,as + b3t)

x(t) = (1 . t)a +tb = ((1 . t)a1 + tby, (1 — t)a2 ~+ ba, (1 = t)a3 + tb3)

Planes parallel to coordinate planes:

S(y’ z) = (0’ y? Z), S(x’ Z) = (mi 0’ Z), 7S(x? y) = (x’ y? 0)'
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Sphere of radius R:

S(u,v) = (Rcosusinv, Rsinusinv, R cosv)
S, xS, = —-Rz(cosusinv,sinusinv,cos )

Surface of z = f(x,y):

S(x,y) = (z,y, f(=z,y))

Sm X Sy = (—f:t, ‘“fya 1)

4 Summary
b
/ fds= / F(C())|C'(t)|dt = scalar line integral
C a

b
/F-ds=/F-tds=/Flda:+F2dy=/ F.C'(t)dt
C C C a

= line integral, flow along curve, circulation, 2 or 3 variables

/ F.dn= / F-nds = / —Fydz + Fidy = flow (flux) across C
C C C

/ / fds = / / fV EG — F2dudv = scalar surface integral
S D

//SF'ndsz//SF'dS=//DF'(SuXSu)dudv

= surface integral, flux across S

\bx W-PO‘L]



