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License
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however you may not redistribute, reprint, republish, modify, or use these
materials, in whole or in part, to produce any derivative work or otherwise
transmit these materials without the express written consent of the author.

Redistribution exception: Faculty, instructors and teachers may redistribute
these works directly to their students for course related use.
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1 Limits

It is expected that the readers, who already have some calculus courses under
their belts, have, at least, a working understanding of one dimensional limits,
if not a theoretical one as well. In other words, given a "reasonable” function
f: D C R — R they can evaluate the expression, or limit,

lim f(z).

T—a

They are probably aware that, informally speaking, the equation

lim f(z)=A

r—a

means that as a "becomes” A, f(z) becomes ”A”. Thus,

lim z% =4

z——2
means that when z becomes -2, 22 becomes 4. Less trivially,

. sinz
lm

z—-0 X

=1

means that as z becomes 0, (sinz)/x becomes 1.
Moreover, the readers should be aware that this notion of limit has
the following, by no means surprising, properties. If

lim f(z) =A and limg(z)=B (1)

then
ln(f(@) £ g()] = A+ B @

lime ()} = cA ®
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lim [f(z)9()] = AB (4)
PAC) = é rovide
il%ﬁ—B P ddB?éO (5)

The evaluation of two dimensional limits, however, gives rise to situa-
tions where intuition can be misleading. Consider, for example, the function

2zy
fz,y) = PR

One might be tempted to evaluate the limit of this function as x — 0 and
y — 0 as

22 limo0=0. (6)

lim |lim = ylil(l) gt o

2zy m 2.0
y—0 |z—0 x? -+ y2

This might seem reasonable until one tries such points as

(z,y) = (% %)

because for such points, which clearly come arbitrarily close to the origin,

we have -
11 25
f <_7 —> = _.L == 17
n'n (#)2+ (1)2

T

which 1 is substantially different from the purported limit of 0 derived in (6).
As the simplicity of this function f indicates, such problems are widespread
and extra care must be exercised when defining the limit of a function of
two or more variables.

Let f : R C ®% — R be a function of two variables. Let x = (z,y) and
a = (a,b). We say that
lim f(x) = A
provided for each number € > 0, there exists a numbers é > 0 such that
|f(x) — A] <€ provided |x—a|<d.
This condition can be stated geometrically (Fig. 1) as

For any interval I = (A—¢, A+¢€) in the range of f there exists a disc
D in the domain, that is centered at a and has radius § such that

f(D)cClI.
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Figure 1: The geometry of the limit

Example 1.1 If
2$2y2
o L x#0

2+ y

fx) =

show that
lim f(x) =0
x—0

For every € > 0 we set

d =+
Clearly
|x —a| <& ifand onlyif «*+y* < é?
and then
2272 2w2y? 24+ yt
00— 0| = |2ty —o) = 2L S Y
2 _1_12 a:4+y w2+y
<1- w<x +yt < =e

x? + y?
Example 1.2 If

f00= 3oy for x#0

show that
linb f(x)#0
2zy
lim 7
<z,y)~<oo>:c2+y”é @)

For € = 0.9 and for any § > 0 whatsoever, we can find a point x such that

2zy
z2+y

|x — 0] <46 and

5 — 0‘ > 0.9. 8)
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Given a function f : D C ®3 — R we define the partial derivative of
f with respect to the component z; of x, at a, to be

f(a+ he;) — f(a)
h

of )
— == 1
ox; (a) )1111»% (19
whenever this limit exists. Note that as h — 0 the values of

a+ he;
vary only in their #'th coordinate. Hence, the partial derivative of f is a
derivative of the function obtained by holding all the variables except the
i’th one constant, and differentiating with respect to ;.
Example 3.1 If
f(z1, T, x3) = &1 + T35 + 21 sin(z + 4a3)

FEvaluate of
'a—mi'(—].,o, 1), 7= 1,2,3.

By definition

a 3
6_:1{‘1(“;1’ 1172,.’.173) =14+0+1- COS(ZL’z + 4(1,‘3) =1+ Sln(mz + 4_1-3)

5}
—é—ii(xl, T, T3) = 2xoxs + 1 cos(za + 4x3)
2

%c"(xl’ g, T3) = 4w3z] + 421 cos(z2 + 43)
3

and hence
—8—f(—1 0,1) =1+sin4
awl Yy -

of

6—932(—1,0, 1) = —cos4
af B
a—wa(—l,o, 1) = —4 cos4.

Partial derivatives are derivatives and hence the usual differentiation
rules hold for them. Namely,
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Proposition 3.2 Let f,g: D C R® — R have partial derivatives at a. Then
a(f+
1.4/ (a) = 2L(a) + £2(a)

2. %2 (a) = f(a)3(a) + 54 (a)9(a)

L) f@) 5 (a (a)g(a) )
33-'5:_(8') 7& [_(,;r(a)?:L provided g (a) 7é 0

d

It is also customary to use the following notations for the partial
derivatives:

of
81;% f’L
and, if f = f(z,y, 2) then
gf— Bf = fz, etc.

8951

The function f: D C R* — Ris sa,ld to be differentiable at a if it has partial
derivatives at a and these partial derivatives are continuous functions.

EXERCISES 3.3

1. Give an example that distinguishes between function with partial
derivatives and differentiable functions.

2. Explain why the fuss about continuous differentiability.

3. Evaluate the partial derivatives of the following functions at (1, -2,
3)
f(z,y,2) = zy®2>
f(iU, Y,z ) = sin(a: j_ 2y) COS(y - Z)
f (.’L‘, Y, Z) ﬁm_-fm

aoe Ty

4 Derivatives and Approximation

The Mean Value Theorem is one of the fundamental theorem of theoretical
calculus. One way of stating this proposition is to say that it formalizes the
imprecise but very useful approximation

Ay _dy
11
Az dz (1)
Proposition 4.1 (Mean Value Theorem) Suppose the function f : [a,b] —

R is continuous and is also differentiable in (a,b). Then there exists a num-
ber 8,0 < 8 < 1 such that

f(b) = f(a)

- = f'(a+ 0(b— a)). (12)
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O
A proof and further discussion of this theorem can be found in the
Abstract Calculus appendix.

Lemma 4.2 Let the function f : D C ® — R have a derivative at x € D.
Then there exists o function 6 = 6(x, h) such that

i. flx+h)= f(z)+hf'(x)+ hé;

1. limh_,o 6=0.

PROOF": Define

5 f@th) — f@)

/
Property ¢ is satisfied for straightforward algebraic reasons. Property i is
justified by the existence of the derivative. Q.E.D.

Example 4.3 Let f(z) = 3. Find the function 6 whose existence is guar-
anteed by Lemma 4.2.

Following the paradigm set in the proof of Lemma 4.2,

(x+ h)% — 23

0= A

— 322 = 3zh + K2,

Note that it is obvious that

lim = 0.

h—0
Example 4.4 Let f(z) = sinz. Find the function § whose existence is
guaranteed by Lemma 4.2.

Following the paradigm set in the proof of Lemma 4.2,
__sin(z +h) —sinz
= 5 -

This time, it is not quite so obvious that the required limit is 0, but this is
true nonetheless. This follows from the fact that

]

Cos .

lim gin(z + h) —sinz
h—0 h

Lemma 4.5 Let the function f : D C R — R. Let A be a number and
€ = ex, h be a function such that

i.f(x + h) = f(z) + hA + he;

#1. limy_,pe = 0.

Then f'(x) = A and ¢ = § where § is the function guaranteed by
Lemma 4.2.

= (sinz) = cos .
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PROOF: Clearly

f(e+h)— f(x) hA+he
h N h B

Taking limits as h — 0 yields

A+te

fi(=) = A.

The equality of § and e follows from parts i above and in Lemma 4.2. Q.E.D.

The next theorem generalizes Lemma 2 to a domain with two dimen-
sions.

Theorem 4.6 Let f : D C R%2 — R. Then f is differentiable at (z,y) if
and only if there exist continuous functions A = A(z,y), B = B(z,y),e1 =
e1(z,y, h, k), €2 = e2(z, y, h, k) such that

flx+hy+k)=f(z,y) + hA+ kB + he; + ke
where

lim ¢ =  lim e
(h,k)—(0,0) (h,k)—(0,0)

PROOQF: Suppose first that such A, B, €1, €2 do indeed exist. Then

lim [(x+h, y_) — f(2,y)
h—0 h

— lim f(m'ly) + h’A + h-'fl - f(m:y)
h—0 h

=’1£’%[A+61] =A

and, similalrly,
i L&Y +F) = f(x,y)
k—0 k

k—0 k

e ’11_%[34'62] = B.

Hence the partial derivatives of f exist at (z,y) and are equal to the A and
B respectively. Since A and B were stipulated to be continuous, so are the
partial derivatives.
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Conversely, assume that the partial derivatives of f exist and are con-
tinuous. Then, clearly

f(m+h,y+k)—f(a:,y)

= f(z+hy+k) = fl@+hy) + flz+hy) - flz,y).
By the Mean Value Theorem, there exist numbers 0 < 0,7 < 1 such that

Fa+hy) ~ 1(@9) = oL o+ ohy)

f@+hyy+k) = f@+hy) =k-§§-<x+h,y+7k>.

Set of of
&1 = 2Lz +oh,y) ~ or(@,)

_of of
€2 = ay($+hay+7-k) ay(way)
The assumed continuity of the partial derivatives of f implies that

limel =0= ]imez
h—0 h—0

Moreover
fl@+hy+k)— f(z,y)

_,9f of
—ham(wwh,y)+kay(w+h,y+rk)

_ . {of of
=h [3—30(96,?4) + 61] +k [—ag(m, y)+ fz] :
The proof is completed by setting

8 8
A= gé(m,y) B= a—ﬁ(w,y)-

EXERCISES 3.4

1. For each of the follewing functions, find the function é whose
existence is guaranteed by Lemma 4.2. In each case prove directly that
limh_.o 6=0.

a. f(z) =22

b. f(z) = x*

c. f(z) =cosz

d. f(z) = =™ where n is a positive integer

e. f(z) ==
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5 The Chain Rule

Proposition 5.1 Let f(x) : E C %2 - R and x(t) : D C R — R? be
functions such that f ox is defined on D. If x(t) is differentiable at t and f
is differentiable at x(t) = (z(t),y(t)), then f ox is differentiable at t and

d(f ox) Bf dz 8f dy
di ( & )dt + oy 8y )%

PROOF: Let At be an arbitrary (small) number. Set
Az = z(t + At) — z(t), Ay=y(t+ At) —y(t)

Af = f(m+Ax,y+Ay) _f(may)‘
Then, by two applications of the Mean Value Theorem,

Af  f@+ Az + Ay) — fz,y+ Ay) + f(z,y + Ay) — f(z,)

At At
Bz +oAa,y+ Ay)Ax + YL (z,y + TAY) Ay
N At
(w + oAz, y + Ay) 3 O o,y + g 2 At

Hence, because of the continuity of the partlal derivatives, and the fact that
lim Az =0= lim Ay,
At0 At—0

it follows that AF f i
ltI—I}oE B_a:( —+—( =il )
Q.E.D.
Example 5.2 Let f(x,y) be a differentiable function such that
f2(5,10) =4, f,(5,10) = —
Let g(t) = f(1 —2t,—2 + 3t2). Evaluate ¢'(—2).

Set x(t) = (1 — 2t, —2 + 3t2) and note that
g9(t) = (fox)(t) and x(-2)= (5,10).
By Theorem 3.5.1
96 = (o) () = ZL(5,10) 5 (=2) + 525, 10/ (-2)

=4-(=2) +(-3) - (—12) =28

The proof of the following 3-dimensional analog of Proposition 5.1 is
relegated to Exercise 5.
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Proposition 5.3 Let f(x) : E C % - R and x(t) : D C R — R be
functions such that f o x is defined on D. If x(t) is differentiable at t and
f is differentiable at x(t) = (z(t), y(t), 2(t)), then f ox is differentiable at t

d(fox) Of dx of dy , of dz
dt . aw(w’y’z dt + ay(x’y’z)-a?_". az(x,y’Z)-(E

EXERCISES 3.5

1. Let f(z,y) be a differentiable function such that

f2(1,0) =—4, f,(1,0) =3.

Let g(t) = f(3 — 2t2,2 + 2t). Evaluate ¢'(—1).
2. Let f(z,y) be a differentiable function such that

f$(11 1) - 7, fy(l, 1) =-1.

Let g(t) = f(t?,t3). Evaluate g’(1).
3. Let f(x,y, z) be a differentiable function such that

72(5,10,6) =4, £,(5,10,6) = -3, f£,(5,10,6) =2.

Let g(t) = f(1 — 2t,—2 + 3t%,* — t). Evaluate ¢'(-2).
4. Let f(z,y,z) be a differentiable function such that

f=(1,,1)=2, f,(1,1,1)=-3, f2(1,1,1) = 2.
Let g(t) = f(t,t2,t*). Evaluate ¢'(1).

5. Prove Proposition 5.3.

6 The Gradient

Given a differentiable function f : D C ®2 — R, we define the nabla symbol

by its operation on f:
_(9of of of
o= (aw’ Oy’ 0z) "
This vector is called the gradient of f.
Example 6.1 The gradient of f(x,y,2) = zy?z® is (1223, 2xy23, 3zy?2?).

This concept has a variety of uses. Note first that it simplifies the
chain rule of Proposition 3. 5 to the form

Weod _wp)-x

Next comes the directional derivative. Consider the function

w= f(z,y,2) =14+2x+3y — 52
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at the origin O = (0, 0,0). If the variable point V moves through O along
the z-axis from, z = —4 to x = 4, then the corresponding value of f, namely
f(2,0,0) = 1+ 2z, increases at the rate of 2 units of w per unit of z.
Similarly, If the variable point V moves along the y-axis from, say, y = —5
to y = 5, then the corresponding value of w, namely f(0,y,0) = 1 + 3y,
increases at the rate of 3 units of z for each unit of y. If the variable point V'
moves along the z-axis from, say, z = —6 to z = 6, then the corresponding
value of w, namely f(0,0,z) = 1 — 6z, decreases at the rate of —5 units of
w for each unit of z.
Finally, If V is constrained to travel along the line

r=y==z
then the corresponding value of w, namely
flz,z,z)=14+2x+3z-bzx =1

does not change at all. This illustrates the notion of the directional deriva-
tive. Given a function f : D C R3 — R and a fixed point P in D and a unit
vector u in R3, we define

f(OP + hu) - f(OP)

Duf = lim h

to be the dire_(ftional derivative of f along u
Since OP and u are held constant then
F(OP + tu)
can be regarded as the composite function
f(x)ox(t) where x(t) = (p1 + tus,p2 + tus,ps + tus)

and then .

= Ofde < ~Of
Duf = ; Bzgt— B — %‘.—’U@ = (Vf) - U

Thus we have proved the following proposition:
Proposition 6.2 If f: D C ® — R and u is a unit n-vector, then
Duf = (Vf)-u
O

Example 6.3 Let f(z,y,2) = zy?2® —x — 2y — 322 and u = (1,-1,1)/V/3.
Compute Dyf at (-1,0,1).
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Here
V= (22 —1,2zy2° — 2,3xy%2% — 62)

Vf(_]., 0’ 1) = (_1’ _2, _6)
and hence

Duf(_l’o’ 1) = (_1>—2’ _6) ' '(1’_+1) - :\/%

It is natural to ask for those directions (unit vectors u) that maximize
and minimize their directional derivatives. Let 6 be the angle between V f
and a unit vector u in R3. By Proposition 6.2

Duf =(Vf)-u=|Vf||lulcosd = |V f|cos8.
Since —1 < cos§ < 1 the next proposition follows immediately.

Proposition 6.4 If f: D C R" — R then
i. u mazimizes the directional derivative of f if and only if

_Vf
AT

and this mazimum value is |V f|;
i1. u minimizes the directional derivative of f if and only if

__Yf
A

and this minimum value is —|V f|.

d

Example 6.5 Let f(z,y,2) = zy?23 —a — 2y — 32%. Find the largest and
smallest values of the directional derivatives of f at (-1, 0, 1).

It was seen in Example 6.3 that
Vf(—l, Oa 1) = (_1a _2a _6)

Hence the maximum and minimum directional derivatives are

1+1/12 + 22 4 62 = +V/41.

Let z = f(z,y) be a function of two variables with graph S. As a
variable point V' = (x,y) moves along a straight line m through a fixed
point P = (py, p2) in the domain of f (i.e., the zy-plane), the corresponding
point

Q= (maya f(-’l?,y))
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Figure 2: An interpretation of the directional derivative
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is constrained to move on the surface S so as to stay above V (Figure 2).
Thus @ moves along the cross section C of § with the vertical plane con-
taining m. Let u be the unit vector from A = (a,0) in the direction of V, let
0 be the angle, from the positive z-axis to m, and let s denote the (variable)
distance from A to V. Note that the straight line m has the parametrization

r=a+scosf, y=ssinb.

Then the slope of C at R is
As—0As ds Oxds Oyds

0z 0z _
= ;9—$-cosG+a—ysm9— (Vf)-u=Dyf.

Hence we have a new interpretation of the directional derivative.

Proposition 6.6 Given a function z = f(z,y), the slope of the cross section
of its graph with a vertical plane is given by

'Duf
where u 18 a unit vector parallel to the cutting plane.

O

Example 6.7 Water is flowing freely down the surface z = x? + 2xy — y°.
In what direction is it flowing above the point (1, -1) in the zy-plane? Also
find the actual direction of flow in R3.

The water will flow in the direction that minimizes the directional derivative.
The gradient is (2z + 2y, 2z — 3y?) evaluated at (1, -1), or (4, -1). Thus the
direction of the water (projected to the xy plane) direction is

(4) _1)
\/ﬁ .

The actual flow in R3 is along the vector

<\/%,—\/L1_7,—\/ﬁ) or (4,—1,—17)

anchored at (1, -1, 0).
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vf

Figure 3: A level curve
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Once again, let z = f(z,y) be a function of two variables with graph
S. Let C be a cross section of S with a horizontal plane z = c. Its projection
L into the zy-plane (Figure 3) has equation

f(x’ y) =c (13)

and is called a level curve. Being a curve, C can also be parametrized as

z=x(t), y=y)
When Eq’n (13) is differentiated with respect to ¢, the chain rule yields
ofdx Of dy _dc_0

drdt  dydt dt
or

(Vf)-t=0

o (% du
T \dt'dt)’

is a vector tangent to the level curve L at the point (z,y).

where

Example 6.8 Find the equations of the tangent and normal to the curve
z? 4+ 2zy — y2 = 0 at the point (1,—-1).

The normal has the same direction as the gradient (4, —1)/v/17 (see Example
6.7). hence the normal has slope -1/4 and the tangent has slope 4. Thus the
required equations are

y+1l=—(r—1)/4 and y+1=4(z—-1).

Let S be the surface defined implicitly by the equation

f(z,y,2) =0.

If C (Fig. 13) is any curve on the surface then it has a parametrization

(@), y(t), 2(t))
such that
f(z(t), y(®), 2(t)) =0.

When this equation is differentiated with respect to t, the chain rule yields

0fds  Ofdy | Ofds _
dx dt  Oydt 0Ozdt
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vf

Figure 4: The formation of a tangent plane

or

(Vf)-t=0

¢ = de dy dz
~ \dt’dt’dt
is a vector tangent to C at (z,y,z). It follows that all the tangent vectors

to all the curves on the surface S that pass through the point P lie in the
plane that is tangent to the point P. In other words,

where

Proposition 6.9 (Vf)(P) is the normal to the plane that is tangent to the
surface

f(z,y,2) =0
at the point P.

Example 6.10 Find the equation of the tangent plane to the surface x +
2zyz3 — 3yz = 0 at the point (1,1,1).
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The general gradient is (2z + 2y23, 2223 — 3z, 6zyz% — 3y) which assumes the
value
4,-1,3))

at the point (1,1,1). Hence the required equation is

4z —-1)—(y—1)+3(z—1)=0.

EXERCISES 3.6

1. Find the gradient of f(z,y) = 23y? + 2%y° at (-1, 1).

2. Find the gradient of f(z,y, 2) = 54223 + 2%y%2% at (-1, 1, 1).

3. Let f(2,y,2) = %%z + 2%52* and u = (-1,1, 1)/v/3. Compute
Dyf at (-1,0,2).

4. Let f(z,y,z) = zy?2® —x — 2y — 3z%. Find the largest and smallest
values of the directional derivatives of f at (-1, 1,2).

5. Water is flowing freely down the surface z = xy — 23+ zy?. In what
direction is it flowing above the point (-1, 1) in the zy-plane? Also find the
actual direction of flow in R3.

6. Find the equation of the tangent plane to the surface 2z — 3ryz3 +
3y%z = 0 at the point (1,-1,1).

7 Functions

A vector function F(x) : D C ® — R2 is said to be differentiable if each of
its components is a differentiable function of  and we write

F(@) = T = (@), Fi), F(z).

This operation satisfies the rules
F+G)=F+G
(kFY = kF’
(fF) = f'F + fF'
F-GY=F -G+F- -G
FxG=FxG+FxG

IfF : D Cc £ — R is a function of two or more variables z,y, ...,

then
QE_F _ (OF, 8F, OF;
x " ° \ 9z’ 6z’ Oz
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Example 7.1
EXERCISES 3.7

OF

By

_p _ (% o OF
TV oy’ 8y’ By

and so on.

)
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