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1 Algebraic Definitions

For each positive integer n, an n-vector is a sequence (aj, a2, ..., ap) of n real
numbers, otherwise known as an n-tuple of real numbers. Thus, (2, —v/17)
is a 2-vector and (—1, 7, sin2) is a 3-vector. The set of all n-vectors is called
Euclidean n-space and is denoted by R"™. In this text we shall be concerned
almost exclusively with 3-vectors. Consequently, we shall formulate all the
subsequent discussion in terms of 3-vectors and refer to them as simply
vectors.

It is customary to denote vectors by bold letters. The components of
the vector a = (a1, az,a3) are the numbers a1, a2,a3. The following labels
are commonly used:

0 = (0,0,0)

i=(1,0,0), j=(0,1,0), k=(0,0,1).

Vectors are subject to the binary operations of addition and subtraction
which are defined as follows:

(al,a27a’3) + (b17b27b3) = (a’l + b17a2 + b27a3 + b3)
and
(a1, a2, a3) — (b1, b2,b3) = (a1 — by, a2 — bz, a3 — b3).

Thus,
(-1,5,v3) + (2,1,v3) = (1,b+ 1,2v3)

and

('—la ba \/5) - (27 1’ \/g) = (_3’ b-1, 0)
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Note that if
a=(a1,a2,a3) and b = (by,bo,bs) (1)
then
a+ b = (a1, a2,a3) + (b1, bz, b3)
= (a1 + b1, a2 + ba, a3 + b3) = (b1 + a1, b2 + az,b3 + a3)
= (b1, by, b3) + (a1,a2,a3) =b +a.

Hence the addition of vectors is commutative. It is also associative, in the
sense that for any three vectors a, b, ¢

a+(b+c)=(a+b)+c. (2)

Many of the identities that hold for numbers also hold for vectors and
their proof are often as straightforward as those of the commutative and
associative rules given above. They will therefore be stated without fanfare
and their proofs will be relegated to the exercises.

In the context of this text, scalars are real numbers and are denoted by
roman letters a,b,c,...,r,s,t,.... These scalars have their own well known
arithmetic operations which need not be belabored here. Rather, we turn to
their interaction with vectors by means of the definition

r(a1, az, a3) = (a1, az, ag)r = (rai, raz,ras).

Thus,
(=2)(—1,b,V3) = (2, —2b, —2V/3).
Note that if Eq'n (1) holds then for any vectors a, b and scalar 7
r(a+b) =r(a1 + b1, a2 + ba, a3 + b3)
= (r(a1 + b1),r(az + b2),r(as + b3))
= (ray + by, raz + rb, raz + rb3)
= r(a1, a,a3) + r(b1, be,b3) =ra+rb

and for any scalars s,t
(s +t)a=sa+ta (3)

(rs)a =r(s(a)). (4)
In other words, scalar multiplication of vectors is distributive and associative.
It is clear that

(a1,a2,0a3) = a1i+ agj + azk.

EXERCISES 2.1

1. Prove Eq’ns (2), (3), (4).
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-1,2,3)

Figure 1: A geometric vector

2 Geometric Interpretation

Vectors can be endowed with a very useful geometric interpretation. We
begin with an arbitrary Cartesian coordinate system. The vector

(a1, a2, a3) denotes any of the directed line segments PQ where P has coor-
dinates (p1,p2,p3), Q has coordinates (g1, g2, 93) and

g1 —P1=a1,92 — P2 = 62,03 — P3 = a3 (5)

(Figure 1). We shall refer to these geometric representations as geomet-
ric vectors as opposed to the strictly numerical or algebraic vectors intro-
duced above. The geometric vector from P to @) is denoted by P_’Q. Thus,
each fixed algebraic vector is represented by an infinitude of geometric vec-
tors - one emanating from each point in space. In particular, the algebraic
vector (p1,p2,p3) is represented by the geometric vector OP from the ori-
gin O to the point P. Two geometric vectors are said to be equal if they
represent the same algebraic vector. This is tantamount to saying that if
P = (p1,p2,p3), @ = (QHQZ:QE")LR = (Tl_:'TstTS)’S = (31, 82, 83) (see Figure
2) then the geometric vectors P(Q) and RS are equal if and only if

(@1 — p1,92 — P2, 93 — p3) = (81 — 71,82 — 72,53 — T'3). (6)
Example 2.1
If P=(2,3,4),Q = (0,5,—1), R = (—1,2,0),S = (-3,4,—5) then
PQ = RS =(-2,2,—-5) and PR=Q8=(-3,—-1,-4).

Proposition 2.2 Two geomeiric vectors P_Q and RS are equal if and only
if they satisfy the following constraints:

i. they have equal lengths;

. the infinite straight lines that underlie them are either parallel or
identical;

1it. they have the same directions.

PROOF: Suppose the two geometric vectors PQ and RS (Figure 3) are
equal. By Eq’n (6) above and the distance formula of Chapter 1, it follows
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& The Dot Product

Vector multiplication can be defined in (at least) two ways both of which
have some analogs of scalar multiplication and both of which display some
”odd” behavior. The first of these is the dot product

a:b =a1b; + azbs + azbs.
For example
(-1,2,-3)-(2,5,-1)=-24+10+3=11

and
(-1,2,2) - (10,2,3) = 0.

It is easy to see that this product is both commutative i.e.,

a-b=b-a (M)
and distributive i.e,
a-(b+c)=a-b+a-c (8)
and
(a+b)-c=a-c+b-c 9)

However, since a-b is a scalar and not a vector, the iterated product a-(b-c)
is undefined. Hence the associative law does not hold for the dot product
(see Exercise 1). In fact, the closure law is also not satisfied since the dot
product of two vectors is not a vector. The proof of the following equations
is relegated to the exercises.

r(a-b) = (ra-b)=a- (rb). (10)

Proposition 3.1 If a = (a1,a2,a3) is an algebraic vector, then the length
of its geometric representation is

va-a=/a?+a? + al.

PROOF: Any geometric representative PQ of a has endpoints P = (p1,p2,P3)
and Q = (q1,¢2,g3) such that

¢ —pi=a; t=1,2,3.

Hence the length of PQ is

Ve —p1)® + (g2 — p2)® + (g3 — p3)?
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Pigure 5: The dot product

- a%+a%+a§=\/zra.
Q.E.D.

The length of the algebraic vector a, denoted by |a|, is defined to be
the length of any of its geometric representatives. I. e.,

la| = vVa-a=1/a?+ a3+ a2

The angle between two vectors is defined to be the angle between any
of their intersecting representatives. We shall soon see that this angle is
indeed well defined.

Proposition 3.2 Let 0 be the angle between the geometric representatives
of v and w that are both anchored at some point P. Then

v-w = |v||w]|cos¥.
PROOF: Apply the Law of Cosines to Figure 5 to get
[w — V|2 = |w|? + |v|? — 2|w]||v| cos 8

or
(w—v)-(W—-v)=w-w+ Vv :v-—2|w||v|cosb

or. By the distributive law of the dot product,
W-W—W: V-V WHV-V=W-W+ V- V—2|w||v|cosb
and hence, by the commutativity of the dot product,
—2v-w = —2|w||v|cos

from which the proposition follows immediately. Q.E.D.



3 THE DOT PRODUCT

10

For example, the angle between the vectors (-1, 2, -3) and (2, 1, -1) is

—1—2+2+3—COS_1 3
V14v/6 V8L

CO8

Corollary 3.3 The angle between two algebraic vectors is well defined.

PROOF: This follows from the observation that the point P did not play

any role whatsoever in the proof of Proposition 3.2.

Q.ED.

Two vectors are said to be orthogonal if the angle between them is a

right angle.

Corollary 3.4 Two vectors are orthogonal if and only if their dot product

18 Zero.

PROOF: This follows immediately from Proposition 3.2.

A vector v such that
v|=1

is a unit vector. The vectors i, j, k as well as
- 1 1 1
V6’ V2 V3

are all unit vectors.

) and (cos6,0,sin@)

Proposition 3.5 If v is any vector, then

v
[v]

18 a unit vector.

PROOF: See Exercise 4.

Q.ED.

O

The projection of a vector v onto the vector u, denoted by proj,v is

defined by Figure 6 where
u=PQ, and RH L PQ.

It is easily seen (Exercise 5) that
. u-v
projyv = ——u.
u-u
For example,

. i-v, v,
projiv = +—i= Tll = (v1,0,0).

(11)
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Figure 6: The projection of one vector onto another

EXERCISES 2.3

1. Prove the Cauchy-Schwartz inequality:
lu-v| < |ujfv].
2. Prove the Triangle Inequality:
[u+v| < uj+|v].
3. Prove the Parallelogram Law:
[w+ v+ [u—v|? = 2Ju|? + 2|v]%.

4. Find the projection of (1,2,3) onto (3, -2, 1).
5. Prove that
. _u-v
projyv = —u.
6. Prove Eq'ns (8), (9), (10).
7. Prove Eq’n (11).

8. Suppose we extend the definition of the dot product by defining
r-a=a-r=ra

Is this extended dot product associative?

4 The Cross Product
The cross product of the vectors a and b is denoted and defined by

a X b = (azbs — asba, azb; — a1bz, a1by — azby).
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For example
(-1,2,0) x (2,-3,5)
=(2-5-0-(-3),0-2—(-1)-5,(-1)-(-3)—2-2)
= (10,5, —1).
Some of the identities that involve this product are

axb=-bxa (12)

a x b = 0 if and only if a = sb or b = sa for some scalar s  (13)

ra x sb =rs(a x b) (14)
(a+b)xc=axc+bxc (15)
ax(b+c)=axb+axc (16)

a-(bxc)=b-(cxa)=c-(axb) (17)
(a x b,a x b) = (a,a)(b,b) — (a,b)? (18)
ixj=k jxk=i kxi=j (19)

We now establish sqﬁle useful identities that relate the dot and cross
products to each other.

Propositigh 4.1 \fbagrange) Ifa,b,c and d are any four 3-vectors, then
axb)-(cxd)y=(a-c)(b-d)—(a-d)(b-c). (20)

PROOF: By the distributivity of both the dot and the cross products

(a+a)xb)-(cxd)=(axb)-(cxd)+ (@ xb):(cxd)

((a+a)-c)(b-d)—((a+a’)-d)(b-c)
=(a-c)(b-d)+(a'-c)(b-d)—(a-d)(b-c)—(a'-d)(b-c)

(s(a) x b)- (e xd) = s[(ax b):(cxd)
((sa) - c)(b-d) — ((sa) - d)(b-c)
=s{(a-c)(b-d) - (a-d)(b-c)]

and that similar equations hold for b,c and d. It follows that it suffices to
prove the proposition when each of the vectors a,b,c and d is one of the
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vectors i, j, k. Note also that interchanging a with b merely reverses the sign
of each side of Eq'n (20) as does interchanging ¢ and d.

If a = b or ¢ = d, then the desired Eq’n (20) reduces to 0 = 0. Hence
it may be assumed that a # b and ¢ # d. If {a,b} = {c,d} Eq'n (20)
reduces to

(axb)-(axb)=(a-a)b-b)

which is easily verified (keep in mind that {a,b} consist of two distinct
vectors of {i,j,k} and so there are only 3 cases to consider). If {a,b} #
{c,d} note that both of the sides of Eq’n (20) only change their signs when
a is interchanged with b as well as when c is interchanged with b. Hence it
may be assumed that

{a,b}N{c,d} =a=c.

Consequently it suffices to verify Eq’n (20) in the following chases

a|lb|c|d |
iljlilk
ilk|i]]
jliljlk
Jlk|[J]1i
k|i|k|]
k|jlk|i
which is easily done. Q.E.D.

Proposition 4.2 Let v and w be two algebraic vectors. Then v X w has
the properties:
i. |v x w| equals the area of the parallelogram spanned by the repre-

sentatives of v and w,
#. v X w is orthogonal to both v and w,

PROOF: i. By the identity of Lagrange
(VX W) (vXw) = (v-v)(w-w) - (v W)
= [v[2w]? — (Iv]iw| cos 6)2 = VI2Iw[*(1 — cos? )
= (|v||w|sin 8).

Since 0 < 0 < « it follows from a well known trigonometric formula that the
area of the parallelogram spanned by v and w is

[v||w|sind = |v x w|.
ii. By Eq'n (17)

v.-(vxw)y=w-(vxv)=w-0=0.
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Figure 7: Volume of parallelopiped

By Corollary 3.4 v (and similarly w) is orthogonal to v x w. Q.E.D.

A parallelopiped is a boxlike solid in which the right angles of the box
have been replaced by arbitrary angles, in such a manner that opposite faces
remain parallel to each other. If the geometric vectors formed by the edges
emanating from the same vertex of the parallelopiped are denoted by u, v
and w, then the parallelopiped is said to be spanned by u, v and w. The
opposite faces of the parallelopiped arre parallel and each of those faces is
a parallelogram. The volume of a parallelopiped equals the product of the
area. of a face with the distance between a face and its opposite face.

Proposition 4.3 If u,v,w are three algebraic vectors, then the volume of
the parallelopiped spanned by their representatives at any point is

[(uxv)- wl.

PROOF: The volume of the parallelopiped of Figure 7 equals the product
of the area of its base PUQV and its altitude WH. By Proposition 4.2 this
equals

|luxv|-WH.
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Let WR be perpendicular to u X v. Since both u X v and WH are
perpendicular to the plane of u and v, it follows that

(uxwv)-w
(uxv):(uxv)

WH = PR = |proj,«v(w)| = uxv

Thus, the volume of the parallelopiped equals

Q.ED.

Example 4.4 The vectors (1, 2, 8), (2, 3, 1), (3, 1, 2) span a parallelopiped
whose volume is
l((l’ 2, 3) X (2a 3, 1)) : (31 1, 2)]

Proposition 4.5 The vectors u,v,w form a right handed system if and
only if uxv)-w>0.

PROOF: Let u = (u1,us2,us),v = (v1,v2,v3) and w be anchored at
the origin. We assume that u and v are in standard position in the sense
that

ug=v3=0, wv2>0, wup=0, uy > 0. (21)

If 4 is the counterclockwise angle from u to v then 0 < § < 7 so that

sin @ > 0 and hence
v = |v|(cos 6, sin#, 0).

Consequently,
u x v = (u1,0,0) x |v|(cos 8,sin6,0) = u1|v|(0, 0, sin §).

and hence
(u x v) - w = wauy|v|sin 6.

Note that u,v,w in standard position form a right handed system if and
only if w3 > 0 which is tantamount to (u X v) - w > 0 because

uy|v|siné > 0.

Thus the proposition is proved when the vectors are in standard posi-
tion.

Next suppose u,v,w are in general position and rotate them until
they fall respectively onto v/, v/, w' in standard position. It is clear that the
"handedness” of u, v, w is the same as that of u’, v/, w/. By Proposition 4.3
the fraction
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(uxv) w
volume(u, v, w)

has the value 1 or -1 at each position of the triple u, v,w. Since this frac-
tion varies continuously as this triple is rotated, it must constantly be 1
or constantly be -1. Consequently, the same must hold for the sign of the
numerator (u X v) + w

Thus, both the "handedness” of u,v,w and the sign of (u X v) - w
remain invariant when these vectors are subjected to a rotation. Since the
equivalence of right handedness and the positiveness of (u x v) - w hold in
standard position, and since every triple of vectors can be rotated into stan-
dard position, the theorem is proved in general position. Q.E.D.

Corollary 4.6 If neither u nor v is a scalar multiple of the other, then u,
v and u X v form a right handed system.

PROOF: This follows from Proposition 4.5 upon setting w = u x v. Q.E.D.

EXERCISES 2.4

. Complete the proof of Proposition 5.
. Prove Eq’ns (12), (14), (15), 16).
. Prove Eq’n (13).
Prove Eq’ns (17), (18).
Prove Eq’n (19).
. Prove Proposition 4.1 using a computer.

7. Find the volume of the parallelopiped spanned by the vectors (1,
2, 3), (-1, 3, 5), (3, -2, 4) at the origin.

8. Find the volume of the tetrahedron with vertices (1, 2, 3), (-1, 3,
5), (1, -3, 5), ( -1, -3, 5).

9. Find the area of the parallelogram spanned by the vectors (1, 2, 3)
and (-1, 3, 5).

10. Find the area of the triangle spanned by the the points (1, 2, 3),
(-1, 3, 5), (3, -2, 4).

11. Let a = (a3, ag,a3), b = (b1, b2, b3), ¢ = (c1, 2, c3). Prove that

D TS N

a- (b X C) = aybacg + agbice + azbscr — azbacy — azbicg — a1bzca.

(See Figure 8 for a mnemonic devide.)

12. Which of the following triples of vectors are right handed and
which are left handed?

a. (1,2,2),(-1,0, 1), (1, 1, 1)

b. (3,1,1), (-1,0,1), (1,1, 1)

c. (-2,-1,0),(-1,0,1), (1,1, 1)

d. (1, 3, 5), (-1,0, 1), (1, 1, 1).
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Figure 8: The determinant

5 Vector Equations of Lines and Planes

Let n be a straight line in a Cartesian coordinate system with direction
angles (a1, ag, a3) and a fixed but arbitrary point A = (a1,a2,a3) onn . We
saw in Chapter 1 Proposition 3.1, that when s denotes the distance from a
variable point x = (z1,z2,z3) on n, the three coordinates of P satisfy the
equations

r;=a;+scosay, t=1,2,3

or, in vector terminology,
x=a+sd where d = (cosai,cosag,cosas). (22)

If (my, mg, m3) are any direction numbers of n and m = (my, my, m3)
then, by Proposition 2.2, the direction cosines of n are

Cos oy = 1=1,2,3

mi
|m|

or

d = (cos a1, cos ag, cos a3) = =
|m|
If we set
s
t=-—
|m|
the EqQ’'n(23) is transformed into
x=a+t|m|£ =a+tm
|m|
or
x=a+tm. (23)

This is the vector equation of the straight line that contains the point a and
whose direction numbers are the components of m.

Example 5.1 The y-azis contains the origin and has direction cosines (0,1,
0). Hence it has the vector equation

x = 0+ £(0,1,0) = (0,¢,0).
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Example 5.2 The vector equation of the line through (1, -1, 2) with direc-
tion numbers (1, 2, -3) is

x=(1,-1,2) +(1,2,-3) = (1 +¢,—1 4+ 2¢,2 — 3¢).
Example 5.3 The vector equation of the straight line joining the points a

and b s
x=a+t(b—a)=(1—-t)a+tb.

By Proposition 1.4.1, the equation whose graph is the plane normal
to the straight line m with direction numbers (m1, mg, m3) and containing
the point (a1, ag, ag) on m is

(x —a1)my + (y — ag)ma + (2 — ag)mg = 0.

If we set m = (my,mg, m3),a = (a1, az,a3) and x = (z,y, z) this becomes
the vector equation
(x—a)-m=0.

Example 5.4

EXERCISES 2.5
1. Find the vector equation of the straight line that joins the points
(1, 2, 3) and (7, -2, -1).

2. Find the vector equation of the plane that contains the three points
(17 2a 3)a (7’ '2a '1) and (27 2, 2)

6 Vector Valued Functions

A vector function F(zx) : D C ® — R3 is said to be differentiable if each of
its components is a differentiable function of x and we write

F(z) = T = (@), Fi), Fi(z)).
This operation satisfies the rules
F+GY =F+G (24)
(kF) = kF' (25)
(fF) = f'F+ fF (26)
(F-G)=F-G+F-G (27)
FxG)Y=FxG+FxG (28)
EXERCISF‘f"Ir 2.6

1. Prove Eq'u. \20) - (2Y).



