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ABSTRACT

A law of gravitation is defined and justified for constant curvature planes
and it is demonstrated that Kepler’s three laws of planetary motion have
natural analogs in this new context.

1 Introduction

Gauss [4] took it for granted that every 2-dimensional surface S in R has,
at least locally, a geodesic polar parametrization X(p, 0) wherein the param-
eter p denotes the distance, on S, of the point X(p, 0) from the origin O
= X(O 0) and 6 denotes the signed angle between a reference p-parameter
curve through O and the p-parameter curve from O to X(p, 0). Using some-
what more modern terminolgy, we simply assume that .S is any 2-dimensional
manifold that consists of the plane together with the metric

dp® + G(p, 0)d6* (1)

The p-parameter curves of this metric are identical with the geodesics that
emanate from O. We follow the convention that

X(p,w+0) =X (~p,0)

and note that all these metrics endow the same portion of the straight line
0 = c with the same lengths. These Euclidean straight lines are also geodesics
of S. The archtypical example is, of course, the (polar coordinates) metric

dp? + p*df? 2)



which defines a manifold that is isometric to the Euclidean plane. The
hyperbolic and elliptic planes have the respective metrics

dp® + R? sinh2(%)d02 and  dp*+ R? sin2(%)d02 (3)

where R is an arbitrary positive number. These are collectively called non-
FEuclidean planes. The manifolds of (2) and (3) are also collectively known as
the constant curvature planes since their Gaussian curvatures are constant.
When R = 1 these are the unit hyperbolic plane and the unit elliptic plane.
The Euclidean, hyperbolic and elliptic planes are all symmertric (homoge-
neous) so that O can be an arbitrary point.

As is well known, in the Euclidean plane

1
= k(1 + ecos(d — )

is the equation of a circle, ellipse, parabola, or hyperbola according as e =
0,0 < e < l,e =1, ore>1 In view of the observations in [5, 8] it is
therefore reasonable to define the corresponding curves

s jitianti = (k(l n ecjs(@ = a))) “)

as the hyperbolic circle, ellipse, parabola, or hyperbola (provided that
kle — 1| > 1), and the corresponding curves

p=Rian™ (k(l + ecis(O = a))) ©®)

as the elliptic circle, ellipse, parabola, or hyperbola. These definitions of
circles, agree, of course, with the standard one.

In Section 2 it will be shown that these curves describe planetary motion
and in Section 3 it will be demonstrated that these curves do indeed possess
the same focal properties as their Euclidean namesakes.

GEODESICS,

These are curves whose second derivative is 0. Thus, both coefficients
of (xxx) vanish. The same substitutions that were used above lead to the

equation
Pu | G,
ez 2G

We add the assumption that

=0
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It follows that
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which has the solution
u = Ccos(0 — o)
or

p = coth™(C cos(d + «)).

dp

Gp

be the miracle function. Then the geodesic with « and y intercepts equal to
a and b respectively has

a=tan™! (— igi) and C =4/F(a)?+ F(b)?

p = coth™ (C cos(0 + a)).

Fp=—

Arclength of geodesic
C2sin?(0 + o) 1
2 inh2 2 e
| Ve + sink? pa / \/(02 w2l o)1 T oG ra) =17
tan(0 + a))

. —1
=yt / C'2cos2(0+a)—1 ==t (m

The hyperbolic distance between the points (p1, 1) and (p2,02) is

cosh ™ [cosh(p1) cosh(p2) — cos(f2 — 1) sinh(py) sinh(p2)]

2 Planetary Orbits

It is not unreasonable to speculate on the physics of the non-Euclidean
planes. The second half of the 19th century saw some work done on the
Archimedian Law of the Lever [1]. More recently, Gal’perin [2, 3] investi-
gated the concept of the center of mass of finite point-mass systems. Lam-
phere [8] studied uniform circular motion. The non-Euclidean analogs of
Kepler’s three laws of planetary motion are derived in this section.

Our strategy is based on the derivation of Kepler’s classic laws in [7].
We begin by obtaining the connection form wjy for the metric of (1). This
is accomplished by analyzing the moving frame.

Bi=%X, Fp=—X 6

1=X, 2= TGk (6)

After the connection form has been obtained, the covariant derivative is
used to determine the acceleration of any arbitrary path in general as well
as the planetary orbits in particular. The assumption of the centrality of the
force of attraction is tantamount to the vanishing of the coefficient of E2 in



the acceleration vector and this yields a second order ordinary differential
equation which is easily integrated to Eq’'n (8) if we stipulate that G is
independent of . When the metric in question is further specialized to the
non-Euclidean geometries of (3) an analog of Kepler’s second law is obtained.
A generalization of Newton’s inverse square gravitational law is then defined
and motivated. This law of attraction, in combination with the coeflicient
of E‘l, yields the second order ordinary differential equation (11) which,
surprisingly, reduces to Newton’s Euclidean equation in the non-Euclidean
case as well. Analogs of Kepler’s first and third laws are then easily obtained.

When the vectors of (6) are used as a moving frame in the surface defined
by (1), they yield the connection [10, p. 277]

wig = :(—‘\//-__gzgdp + L\Z—\/%zﬁde

= 0dp + (VG),d0 = (VG),db.

Let @(t) = X(p(t), 0(t)) be an arbitrary curve in this plane and let V(t)
and a(t) be its velocity and acceleration vectors, respectively. Then, if ’
denotes differentiation with respect to ¢, the velocity vector is

V(t) = X'(t) = X, 0’ + Xgb'
= plﬁl = 0,\/aﬁ2
and the acceleration vector is its covariant derivative [10]
a(t) = Vgv
= [(¢') + 0'VG(~(VG),)dd (¥(t))|E1+
[(B'VGY + ¢ (VC),d (¥(1)) | Ez
= [ - 6*VG(VG), By +
[0"VG + 0 (VGY + 0 (VG), B2
= [p" — 0°VG(VG),E1+
0"V + 8 [(VE),ol + (VE)oB') + p8 (VT),

= [p" = 0°VG(VG),|E1+



[0"VG +20'0'(VG), + (VG0 |z (7)

Since the attraction the sun exerts on the planet is central, that is, di-
rected towards O, it follows that the coefficient of Eg in Eq’n (7) vanishes.
If we now add the assumption

G is independent of 0
then
0"VG + 20'0'(VG), =0

or

L 0"G+ 040G, =0

al

or 1
—[0'GY =0
Vel
from which it follows that for some constant h
0'G = h. (8)

Set

H(p) = [ VGip
and let the double of &(t) be the curve
2a(t) = X(t) = (2p(2), 6(2))
Then the area of the wedge
0<71<0+ A0, 0 <r<2p=2p(7)
that is swept out by the radius 2p(t) of the double of @&(¢) is

A= / T S Gdrdr = / " @) - HO))dr
7] 0 /]

Hence
42 — H(2p)~ H(O) (9)

For the general hyperbolic plane

H{p) = /\/adp = /Rsinh(p/R)dp = R?cosh(p/R) + C
and for the general elliptic plane

H(p) = /\/a—dp = /Rsin(p/R)dp = —R2cos(p/R) + C

The following proposition is the constant curvature analog of Kepler’s
second law.



Figure 1:

Theorem 2.1 In a constant curvature plane, let @(t) denote a curve whose
acceleration vector is constantly directed at the origin O. Then, if t is inter-
preted as time, the radius of the double of d(t) sweeps equal areas in equal
times.

Proof: Let A denote the area swept out by the doubled radius. In the
hyperbolic case, by (9),

djg = R? cosh(2p/R) — R? = 2R%sinh?(p/R)
so that dA  dAdo

ed _4AdY 52 . 12 ' — o —

il 2R*sinh*(p/R)0" = 2GO" = 2h

which means that the area swept by the doubled radius is proportional to
the elapsed time.
In the elliptic case, by (9),

% = R% — R? cos(2p/R) = 2R*sin*(p/R)
o dA _dAdf
ettt 2 a2 /. -
Tl i 2R*sin“*(p/R)0' = 2GO" = 2h

which means that here too the area swept by the doubled radius is propor-
tional to the elapsed time.

In the Euclidean plane the area swept out by the double radius is four
times that swept out by the radius. Therefore the statement of the theorem
is equivalent to the classical Kepler’s second law.

]

We next turn to Kepler’s first law. This calls for a law of gravitation for

which we propose an attraction of
k

el (10)
where k > 0. Note that in the Euclidean case (2) this reduces to Newton’s
law of gravitation. This observation, together with Occam’s razor, could
be sufficient grounds for the proposed attraction of (10), but we offer an
additional heuristic rationale. One of the ways of justifying Newton’s inverse
square assumption is to observe that the total flux of the gravitational field
across any sphere centered at the sun is independent of that sphere’s radius.
Consequently the gravitational flux arriving at a planet at distance p from
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the sun should be inversely proportional to the surface area of the sphere of
radius p. In the unit hyperbolic case this sphere is known [11, Ex. 3.4.5] to
have volume

m(sinh 2p — 2p)
which, when differentiated, yields a surface area of
47 sinh? p = AnG

Thus, assumption (10) is reasonable in this well known plane as well.

Since the assumption of the centrality of the attraction resulted in the
vanishing of the coefficient of Eg of Eq’n (7), it follows that the magnitude
of the force is proportional to the coefficient of E; and so the gravitational
equation is

"o 0!2\/5(\/5)’, = —-g—- (11)
The substitution 1
g s / ~dp (12)
yields
du  ldp
o~  Gdf
or d P
P_ g%
- O
Hence, by two applications of (8)
dp _dpdd  duh _ —-h—(-i——’lf
dt ~ dodt~  deG -~ " do
p_ dudd _ b
2~ d2dt  Gde? G db?

The substitution of this value into the gravitational equation (11) yields

242, B2
du —=(VG), = E

G doz2  G32
or
d*u n V@, &
| e m
o dPu G k
w2 tae = (13)

In all three cases, the Euclidean, the hyperbolic and the elliptic, the fact

that y
- / P



converts Eq'n (13) into the second order linear equation

d?u _
az Tt TR
whose general solution can be expressed as
k
o= —}25(1 + ecos(0 — a)) (14)

for some positive real number e and arbitrary real number «. In the Eu-
clidean case this yields
- h?/k
| + ecos(f — a)
which, for 0 < e < 1 describes a Euclidean ellipse.
In the general hyperbolic case, Eq’'n (14) yields the hyperbolic ellipse

h2
_ -1
p = R tanh (kR(l + ecos(@ — a)))

and in the general elliptic case Eq’n (14) yields the elliptic ellipse

2
p = Rtan™! L
kR(1 + ecos(f — o))

These considerations prove the following theorem which is the constant
curvature analog of Kepler’s first law.

Theorem 2.2 The planetary orbits in the non-Fuclidean geomelries are el-
lipses.

O

This section concludes with an analog of Kepler’s third law which states
that in the Euclidean case the squares of the return times of the planets is
proportional to the cubes of their semi major axes. Let E denote either of
the non-Euclidean ellipses

1
tanh(p/R) = k(1 + ecos(d — a)) 15)
or 1
t =
il o) ) k(1 + ecos(d — )) (16)
The associated FEuclidean ellipse E' is defined to be
1
E: p (17)

= k(1 + ecos(0 — a))’

drawn in the same polar coordinate system as F.



Figure 2:

Theorem 2.3 The squares of the return times of the non-Euclidean plan-
etary motion aboutl a fized mass is proportional to the cubes on the semi
magor azes of the associated Euclidean ellipses.

Proof: Let P be an arbitrary point on the orbit E of (15, 16) and let P’
be the intersection of the radius OP with the auxiliary ellipse E’ (Fig. 1).

As P traces out its orbit E, P’ traces out the Euclidean ellipse F'. Let
T be their common return time. Since P’ traces out an ellipse it follows
from [9 Book I Proposition XI, 7] that its acceleration vector is directed
towards the origin O and has a magnitude that is inversely proportional to
the OP”2. Tt therefore follows from the Euclidean Kepler’s third law that 7

is proportional to the cube on the semi major axis of the Euclidean ellipse
E’ of (17).

O

3 Geometric Properties

In this section we discuss the geometric properties of the curves of (4, 5).
It turns out that in this respect they are quite similar to their Euclidean
analogs.

Theorem 3.1 In a constant curvature plane a curve is an ellipse (hyper-
bola) if and only if has two foci such that the sum (difference) of the distances
of the arbitrary point on the curve from the foci is constant.

Proof: This is, of course, well known in the Euclidean case. Since rota-
tions about the origin are isometries of all the constant curvature manifolds,
it may be assumed that o = 0. In the hyperbolic case of (4) set

A= (p(O),O), B = (p(’ﬂ'),ﬂ'), | F= (p(O) - p(ﬂ'),O)

where

p(0) = tanh™! (k—:ke) ,  p(m)=tanh™! (k —1ke)

Note that there are two possible dispositions for O, A, B and F' according
as 0 < e < 1ore>1 (Fig. 2). Moreover, the branch H; consists of those
points (p, 0) of the hyperbola Hy U Hy for which p > 0, whereas the branch
H,, consists of the points for which p < 0. We define a and ¢ by means of
the equations

2a = tanh™? (mi;;) + tanh ™! (ﬁ) (18)

9



2¢ = tanh™! (kz(ll——e))_tanh—l (k(ll—}—e)) (19)

Assume first that
R=1

It is easily verified in the unit hyperbolic case that if we set

k—ke+1lk+ke+1

o S e g i
A, _ k—het1kke—1
27 % “ke—1ktket1
then
1
2a=§lnA1 (20)
1
2c=§1nA2 (21)

If we also set

Ao = (k — ke +1)(k — ke — 1)(k -+ ke -+ 1) (k + ke — 1)

_k(l1+ecosf) +1
"~ k(1+ecosf) —1

then it follows from Eq’ns (20, 21) that

A

2 12,2
cosh2a=l(\/A1+ L )=k+1 L

2 VA vy
1 1 2k
inh2e = - [VA] — —= ]| = —=
SRS ( ' \/A—l) VAo
_ ] 1 D
cosh p = cosh (tanh [k(l-i—ecosa)

= cosh (%hlAg) == % (\/Zl_o+ ﬁ)

=3 (15 )

k2 —1— k2
VAo

cosh2¢c = % <\/A2 + \/15_2_> s

10



1 1 2ke
sinh2e = 5 (VB2 = = ) =
2 VA  Vho

For the points P on the ellipse F of Figure 2, the hyperbolic law of cosines
states that

cosh p = cosh p cosh 2¢ — cos(m — @) sinh psinh 2¢
We verify that
p+p=2a
by simplifying
cosh p — cosh(2a — p)
= cosh p cosh 2¢ + cos @ sinh p sinh 2¢ — cosh 2a cosh p + sinh 2a sinh p

= cosh p[cosh 2¢ — cosh 2a] + sinh p[cos 6 sinh 2¢ + sinh 2a]

=5 (a0 7m) (Gm) 3 (V- ) (=0 s+ )

2\/Z._\/___[ (Ag + 1) + (Ag — 1)k(1 + ecos 8)]

_ 1 [_ 2k(1 + ecos?) 2k(1 + ecosf) ]

T 2V/AgVAo | k(l+ecosf)—1  k(l+ecosf)—1
=0

For the points P on the branch H;j of the hyperbola of Figure 2, the hyper-
bolic law of cosines yields

cosh p = cosh p cos 2¢ — cos @ sinh psinh 2¢

We verify that
p—p=2a

by noting that
cosh g — cosh(p — 2a) = cosh p — cosh(2a — p)

which, by the above calculations for the ellipse equals 0. Finally, for the
points P on the branch H» of the hyperbola of Figure 2, the hyperbolic law
of cosines yields

cosh p = cosh pcosh 2¢ — cos(f — 7) sinh psinh 2¢

= cosh p cosh 2¢ + cos @ sinh psinh 2¢

We verify that
p—p=2a

11



by noting that
cosh g — cosh(p — 2a) = cosh g — cosh(2a — p)

which, by the above calculations for the ellipse, also equals 0.

Conversely, let a > ¢ > 0 and let loop E (resp. curve Hy U Hy) of Figure
2 be the locus of all the points the sum (resp. differenece) of whose distances

from O and F equals 2a, where OF = 2¢. Set

o tanh(a + ¢) — tanh(a — ¢)
~ tanh(a + ¢) + tanh(a — c)

and
__tanh(a + c) + tanh(a — c)

~ 2tanh(a + c) tanh(a — ¢)

(22)

(23)

Then 0 < e < 1 (resp. 1 < e) and e and k satisfy E’qns (18, 19). It follows
that the corresponding graph of (4) and loop F (resp. curve Hy U Hj) are

identical sets.
For the unit elliptic case the reader is reminded that

cos(tan™ z) = 1 sin(tan™! z) = ... N
Vz? +1 2+ 1
Set
¢ I S S 1
N k0= T kA +e) " k(1 + ecosh)
and
2a = tan"' 1 + tan"! zy
2¢ =tan 'z — tan™! T
Then
cos 2a = cos (tan””1 x1 + tan™* :1:2)
- 1 1 . T xro . 1— r1xo
Vot 1yfed 41 yfed e VEHDEHD
and
sin 2q = oy Do
V@ + )@+ )
tan p = xg,cosp ! sin p =2
= 2o, = T = s
Vg +1 Vg +1
14 2129 ) Ty — T2
cos2¢c = a sin2¢ =
V@ +1)@3+1) V@ +1)@3+1)

Hence, by the elliptic (or spherical) law of cosines,

12



cos p — cos(2a — p) = cos p cos 2¢ — cos 0 sin psin 2c¢

— c0s 2a cos p — sin 2a sin p
_ (14 zyx0) — wo(y — x2) cos§ — (1 — 212) — (21 + Z2)Tg
V@3 +1)(2? + 1)(23+1)
2 _ cosf 2ke 2
_ E2—kZe? ~ E(1tecos0) k2—k2e? (k2 —K2%e?)k(1+ecos6)
V@ + 1)@ + 1)@ + 1)
=0

from which it follows that
p+p=2a.

The unit elliptic hyperbola is disposed of by the same argument that
was used for the unit hyperbolic hyperbola. The converse follows from an
argument similar to that given in the unit hyperbolic case.

The proof of the theorem for general R is obtained by replacing the
quantities

PA,PB; Qs C, P, p

of the foregoing arguments with

respectively.
O

It is well known that Euclidean parabolas can be given a two-foci defini-
tion by fixing one of the foci of the ellipse and letting the other diverge to
infinity. Similarly, the hyperbolic parabola (4) is the limiting configuration
of hyperbolic ellipses. This can be justified by examining the effect on the
ellipse E of Figure 2 of letting ¢ diverge to infinity while holding a — ¢ con-
stant. It follows from Eq’n (22) that e converges to 1 so that the limiting
configuration is indeed a hyperbolic parabola. It is clear that such is also
the case for the elliptic parabola. We note in passing that the curve of the
hyperbolic plane defined as the locus of all points that are equidistant from
a given point (focus) to given straight line (directriz) is not a hyperbolic
parabola.

Theorem 3.2 Ellipses, hyperbolas, and parabolas are conic sections.

13



Figure 3:
Figure 4:

Proof: For the hyperbolic ellipse we use a slight modification of the well-
known diagram and argument that appear in pp. 7-9 of [6]. In Figure 3
the curve F is the intersection of a plane and a cone. We then inscribe
two spheres that are tangent to both the cone (along K and L) and the
intersecting plane (at F' and G). Let SQBP be a generating line of the
cone. It is clear that the length of P(Q is independent of the position of P
on K. Moreover,
PQ = BP + BQ = BF + BG

so that the fixed points F' and G are indeed the foci of the ellipse F.

Figure 10 of [6] can be used for the hyperbola. As for the hyperbolic
parabola, suppose the smaller sphere that is tangent to the cone along L is
fixed while the plane containing the ellipse E pivots so that A moves closer
to S while C recedes to infinity. Let a,c, e, k be as defined in the proof of
Theorem 2.1. Then GA = a — ¢ remains bounded while ¢ = GF'/2 diverges
to infinity. It follows from Eq’ns (22, 23) that the limiting cross section
is indeed a parabola. In Figures 4 and 5 elliptic 3-space is visualized as a,
ball in 3-space in which antipodal points are identified. Figure 4 displays an
ellipse and a parabola, whereas Figure 5 displays a hyperbola. Note that the
parabola still has two foci. With this understanding the above argument in
hyperbolic space still works in this space as well.
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